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Overview

In their paper, the authors consider the construction of asymptotically efficient substitution

estimators, for which they propose a computerized implementation. We read their work with

great interest and much enthusiasm. We have been strongly advocating the use of substitution

estimators and we infer from the authors’ emphasis on ‘compatibility’ that they also value the

merits of such estimators. The proposed approach incorporates an important and innovative

departure from currently available methods in that the analytic computation of the efficient

influence function (EIF), an ingredient generally required for efficient estimation in infinite-

dimensional models, is replaced by a computerized approximation. We agree with the authors

that the ability to computerize this task is both interesting and useful, and we applaud them

for initiating work on this important problem. The computerization of calculations currently

done by hand will surely play a key role in the future of statistics.

We highlight here certain caveats pertaining to the proposal as it currently stands and

opportunities that lie ahead. In particular, we note that:

(1) the numerical approximation procedure suggested by the authors does not always

yield the EIF, even in the ‘unrestricted problem’;

(2) a regularized extension of their procedure will exhibit much greater applicability in

practice;

(3) the authors restrict their attention to efficient estimation in nonparametric models,

thus avoiding models in which the EIF is most difficult to derive and computerization

would be most useful;

(4) more precise guidelines may be needed to ensure the first computerization-based

estimator the authors propose yields the desired large-sample properties.

We elaborate on these points below. While we support the authors’ push for computerization,
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we believe it is also important to highlight the risks it poses. In particular, we wish to stress

that

(5) the black-box nature of a computerized procedure can mask underlying theoreti-

cal difficulties and provide unsuspecting practitioners seemingly sensible yet invalid

results.

We provide an example from our own research where (5) can occur quite dramatically.

In the remainder, we adopt in large part the notation of the authors, except that we use

Z to denote the data unit D to avoid expressions such as
∫
f(d)dd.

1. When does the proposed numerical approximation procedure yield the EIF?

Suppose that the model is nonparametric and that the parameter of interest τ is pathwise

differentiable with EIF at F denoted by φ∗
F . Denote by L0

2(F ) the Hilbert space of mean-zero

square-integrable real functions defined on the support of F . Suppose also that τ is Gâteaux

differentiable at F along all paths of the form Fε,H := (1− ε)F + εH indexed by 0 6 ε 6 1

and with H any distribution function. Furthermore, suppose that there exists an element

δF ∈ L0
2(F ) such that the linear representation

d

dε
τ(Fε,H)

∣∣∣∣
ε=0

=

∫
δF (z)d{H − F}(z)

holds. Then, it must follow that d
dε
τ(Fε,z)

∣∣
ε=0

= φ∗
F (z), where Fε,z := (1− ε)F + ε1〈z〉 with

1〈z〉 the distribution function of the degenerate distribution at z. Thus, under the above

conditions, the numerical approximation procedure proposed by the authors indeed yields

the EIF.

Many parameters of interest depend on local features of the data-generating distribution

and may fail to satisfy the conditions above. For such parameters, the proposed Gâteaux

derivative does not necessarily yield the EIF. As the authors have verified, their approach

is valid in the examples considered in their paper. Nevertheless, a seemingly innocuous
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modification of their motivating example illustrates that the approach is not generally

applicable, even in the setting of the unrestricted problem on which they focus. Let G0

be a given marginal distribution of X dominated by the marginal distribution of X un-

der F , and consider the parameter τ(F ) :=
∫
y(x)dG0(x), interpretable as a reference

population-adjusted mean outcome. This parameter is defined for each F for which the

authors’ motivating parameter (see Equation 3 in their paper) is defined. Furthermore, it is

pathwise differentiable in a nonparametric model and has EIF at F evaluated at observation

z := (x, r, y) given by

φ∗
F (z) :=

r{y − y(x)}
e(x)

· p0(x)

p(x)
,

where p0 and p are the density functions associated to the marginal distribution of X

under G0 and F , respectively, relative to a common dominating measure µ. We can verify

that, whenever µ is the Lebesgue measure, d
dε
τ(Fε,z)

∣∣
ε=0

= 0 6= φ∗
F (z), indicating that the

proposed Gâteaux derivative approach fails to yield the EIF. This is truly worrisome since

there is no prima facie indication to suggest failure for this simple parameter and model.

Clearly, additional conditions, such as those proposed above, must be imposed on a given

parameter τ to ensure the validity of the proposed approach. In any given problem, the

analytic verification of this condition may be (nearly) as difficult as simply computing the

EIF by hand.

We note additionally that the proposed Gâteaux derivative is not defined for many param-

eters, even within a nonparametric model. As a simple illustration, consider the (nonpara-

metric) model consisting of all absolutely continuous distributions, and suppose we wish to

estimate the average density value

ψ(F ) :=

∫
f(z)dF (z) =

∫
f 2(z)dz ,

where f is the Lebesgue density associated to the distribution function F . The parameter ψ

is pathwise differentiable and has EIF at F given by φ∗
F := 2 [f − ψ(F )]. Furthermore, under
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smoothness conditions on f , regular and asymptotically efficient estimators of ψ(F ) exist –

see, e.g., Ibragimov and Hasminskii (1978), and Bickel and Ritov (1988). Nonetheless, the

‘submodel’ considered by the authors is not truly a submodel since the distributions that

comprise it are not absolutely continuous. The parameter is thus ill-defined at each Fε,z with

ε 6= 0. The computerized approach described therefore cannot be implemented even though

the model is nonparametric. Although not sufficiently stringent to constrain the tangent

space and yield a proper semiparametric model, the model constraints are strong enough to

forbid the type of submodels used by the authors.

These examples highlight that the proposed Gâteaux derivative only provides a representa-

tion of the EIF under possibly strict conditions on the parameter and model considered. This

is why the EIF is generally obtained via the more general concept of pathwise derivative: if

the data-generating distribution F is known only to lie in some model M, the EIF φ∗
F is the

unique element of the tangent space TM(F ) of M at F such that

d

dε
τ(Fε)

∣∣∣∣
ε=0

=

∫
φ∗
F (z)h(z)dF (z)

for every score h ∈ TM(F ) and every regular one-dimensional regular parametric submodel

Fε through F at ε = 0 and with score h for ε at ε = 0. When the model is semiparametric,

this implicit representation does not seem nearly as amenable to computerization as the

explicit (but more narrowly applicable) Gâteaux representation the authors have used.

However, as we argue below, it may be used to resolve the difficulties discussed so far in

some nonparametric problems.

2. Broadening the applicability of the proposed approach via regularization

It is often possible to regularize the authors’ proposal to yield the EIF when the model is

nonparametric. Rather than taking a point mass-contaminated submodel, we will consider

any regular one-dimensional parametric submodel Fε,z,λ with score

dHz,λ

dF
− 1 ∈ L0

2(F )
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at ε = 0 for some sequence of probability distributions Hz,λ dominated by F and symmetric

about z such that
∫
g(u)dHz,λ(u) → g(z) as λ → 0 for all g in a large class Gz of functions

(e.g., all functions continuous in a neighborhood of z). Often, we may simply choose the

submodel Fε,z,λ = (1− ε)F + εHz,λ. We note that if F places positive mass at z, the authors’

original proposal of setting Hz,λ := 1〈z〉 for all λ falls in this framework. The pathwise

differentiability of τ yields

d

dε
τ(Fε,z,λ)

∣∣∣∣
ε=0

=

∫
φ∗
F (z0)

[
dHz,λ

dF
(z0)− 1

]
dF (z0) =

∫
φ∗
F (z0)dHz,λ(z0) −→ φ∗

F (z) ,

as λ tends to zero, where the limit holds provided φ∗
F ∈ Gz.

For the remainder of this section we assume that the component of z that requires smooth-

ing is univariate and absolutely continuous with respect to Lebesgue measure. For any real

w and λ > 0, we denote by Uw,λ the distribution function of the uniform distribution over

(w − λ,w + λ). Below, we revisit the two examples discussed in the previous section.

In the average density value example, suppose that F is absolutely continuous and let

Hz,λ = Uz,λ. In this setting ψ(Fε,z,λ) is well-defined for each λ > 0 since then Fε,z,λ is abso-

lutely continuous. The Gâteaux derivative of ψ at F along this submodel can be computed

using that

ψ(Fε,z,λ)− ψ(F )

ε
= φ∗

F (z)+2(1− ε)
[
F (z + λ)− F (z − λ)

2λ
− f(z)

]
+ ε

[
1

2λ
+ τ(F )− 2f(z)

]
with φ∗

F (z) the EIF of ψ at F and evaluated at z. For ε and λ small,

ψ(Fε,z,λ)− ψ(F )

ε
.
= φ∗

F (z) +
ε

2λ
.

It follows then that, for small λ and much smaller ε, this secant slope approximates φ∗
F (z),

as desired. Here, the regularization allows us to circumvent the fact that the parameter is

not defined along the point mass-contaminated submodels.

For the reference population-adjusted mean outcome, suppose that the covariate X is a

univariate continuous random variable and Y is a binary outcome. If Hz,λ is the distribution
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where (R, Y ) equals (r, y) with probability one and X is drawn from Ux,λ, we have that

τ(Fε,z,λ)− τ(F )

ε
= φ∗

F (z) +

{∫
φ∗
F (z1)dHz,λ(z1)− φ∗

F (z)

}
+
ε

λ

∫
φ∗
F (x1, r, y)

[
λ {2λp(x1)e(x1)− 1}

2λ(1− ε)p(x1)e(x1) + ε

]
dUx,λ(x1)

with φ∗
F (z) the EIF of τ at F and evaluated at z. Under appropriate smoothness conditions

and provided e(x)p(x) > 0, the secant slope approximates φ∗
F (z) once again for small λ

and much smaller ε. The proposed regularization therefore allows recovery of the EIF in an

example where, although the parameter is well-defined along the point mass-contaminated

submodels, the Gâteaux derivative along these submodels does not yield the EIF. This result

holds when the outcome Y is continuous as well provided Hz,λ also includes regularization

in the Y component.

This regularization strategy is somewhat subtle since its result depends on the relative rate

at which the approximation parameters vanish. To ensure recovery of the EIF, this rate must

satisfy a certain condition whose derivation required analytic work. We conjecture that, in a

large class of problems, the condition ε = o(λ) will suffice when smoothing occurs in a single

dimension. In any case, this regularization extends the applicability of the authors’ proposal

to more settings.

3. Restriction to nonparametric models

As they explicitly recognize in their paper, the authors have focused exclusively on efficient

inference in an unrestricted model. It is important to emphasize this since applicability in

the context of semiparametric models remains at this time unrealized.

In nonparametric models, the tangent space is by definition fully understood, and as such,

there is no need to conjecture about its structure. The EIF is also the only possible gradient,

and in our experience, its analytic computation is often – though not always, as we mention in

the conclusion – rather straightforward. Intricacies generally arise in semiparametric models

(i.e., models with restricted tangent spaces). As the authors suggest, efficient inference within
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semiparametric models is often complicated because of the need to characterize the tangent

space and project onto it. Indeed, analytic computation of the EIF is generally accomplished

by identifying a gradient and projecting it orthogonally onto the tangent space, an often

difficult endeavor. Computerization would be particularly appealing in such cases.

Addressing models which are semiparametric is an important outstanding problem in this

realm. We are very much interested in such an extension, and certainly encourage further

research along this line. We consider such an extension crucial for fulfilling the promise of

computerized semiparametric efficient estimation.

4. Practical implementation of the proposed estimation approach

The authors propose two different deductive estimation strategies, both of which involve

the construction of parametric submodels through an initial estimate of F (or whichever

portion of it may be relevant). In their first proposal, the authors suggest selecting among

all distributions contained in a chosen submodel the one at which the approximated EIF

has empirical mean closest to zero. However, no general guideline is provided on how a

submodel should be chosen. There may be infinitely many distributions that solve the EIF

estimating equation, most of which are inadequate estimates of F . If the construction of

a revised estimate of F only focuses on solving the EIF estimating equation, this estimate

may have poor statistical properties. This matters because, as the authors indicate in their

Supplementary Material, solving the EIF estimating equation does not suffice for asymptotic

efficiency of the resulting substitution estimator: the revised estimator must still be a good

estimator of F . As discussed in van der Laan and Rubin (2006) and implemented in Chaffee

and van der Laan (2011), it is advantageous to adopt the least-favorable submodel when

constructing the estimators described by the authors, though this may be more difficult to

implement in practice using computerization.

The authors’ second proposal is the computerization of a standard TMLE implementa-
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tion: successive estimates are obtained by finding the minimizer of the empirical risk over

an approximate least-favorable parametric submodel through the current estimate of F .

Heuristically, TMLE preserves the statistical properties of the initial estimator of F by

ensuring that the empirical risk of successive estimates of F never increases. As such, the

TMLE algorithm is devised precisely to produce an estimate of F that not only solves the

EIF estimating equation but is also more likely to satisfy the regularity conditions required

for asymptotic efficiency.

In view of this, it appears to us that (a regularization of) the authors’ second proposal may

be more likely to exhibit good statistical properties and yield desirable results in practice

than the first proposal.

5. Potential for abuse inherent to computerized approaches

This last point is not a limitation of the authors’ proposal per se but rather a call for caution

applying to any procedure that automates the computation of the EIF. While the task of

analytically deriving the EIF can be quite onerous, the exercise can be informative. For

example, the process will often clarify when the parameter is pathwise differentiable, when

the EIF has desirable properties (e.g., boundedness, robustness to misspecification), and

under which regularity conditions the resulting estimator will be asymptotically linear and

efficient. Invariably, the theoretical work involved translates directly into concrete guidelines

for practice. Computerization would necessarily veil any such insights. At worst, this could

result in the blind use of a supposedly efficient estimator even when it can be shown that no

regular root-n consistent estimator even exists. In such a case, the user may be completely

oblivious to the invalidity of the inferences drawn. We describe an example arising in our

research.

Suppose that (X,R, Y ) ∼ F , where X denotes a patient’s baseline covariate vector, R

is a binary treatment indicator and Y an outcome of interest. The problem of estimating
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the adjusted mean outcome τ(F ) := EF [EF (Y |R = r∗(X), X)] under the optimal treatment

rule x 7→ r∗(x), defined as

r∗(x) := I (EF (Y |R = 1, X = x) > EF (Y |R = 0, X = x)) ,

has been of much interest to investigators (see, e.g., Chakraborty and Moodie, 2013). It is

known that if PF (EF (Y |R = 1, X) = EF (Y |R = 0, X)) > 0, in which case F is referred to

as an exceptional law, this parameter is generally not pathwise differentiable (Robins and

Rotnitzky, 2014). Nevertheless, the left- and right-sided pathwise derivatives may still exist

along every smooth one-dimensional parametric submodel through F (Hirano and Porter,

2012). This suggests that, even though it does not and clearly cannot yield the EIF since

the latter does not exist, the Gâteaux derivative described by the authors exists. Interested

readers can verify these facts in the simpler no-covariate scenario where r∗ is taken to be the

marginally best treatment. Practitioners may therefore implement this approach and expect

the resulting inference, known to be incorrect, to instead be valid. In the same spirit, the

bootstrap is an example of how the simplicity of ready-to-use techniques can be both a curse

and a blessing, empowering practitioners immensely all the while leading to widespread (and

generally involuntary) abuse.

We note, additionally, that there may be no sensible approach for algorithmically detecting

failures of pathwise differentiability in practice. In the example above, such attempts would

necessarily fail. Because the investigator does not know a priori whether or not F is an

exceptional law, Fw(δ) may not be an exceptional law for any particular choice of δ – in fact,

it may be non-exceptional for all δ. The parameter τ may therefore be pathwise differentiable

and admit an EIF at each Fw(δ). Under reasonable regularity conditions, any estimator

solving the EIF estimating equation, including the proposed deductive approach, converges

at root-n rate but will suffer from non-negligible asymptotic bias (Luedtke and van der Laan,

2014). Most importantly, the proposed method will give no indication that the estimator is
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asymptotically biased, and the user will have no apparent reason to distrust the resulting

inference.

This example shows that the underlying assumption of pathwise differentiability is essential

to the proposed computerized method and the regularization thereof. The verification of

such an assumption can be challenging even analytically. In fact, we have had personal

experience with an error in the elicitation of regularity conditions required for the pathwise

differentiability of this parameter. There is certainly an appeal for an automated method

for establishing regularity conditions under which the parameter is pathwise differentiable

at the data-generating distribution. Though beyond the scope of the current work, this is an

important area for future research.

Concluding remarks

Again, we commend the authors for initiating what is sure to be an exciting line of research on

the role of computerization in statistics. We have noted that the authors’ proposed numerical

approximation does not always yield the EIF, even in the unrestricted problem. Nonetheless,

we have argued that a regularization of their approach appears to mostly retain the deductive

nature of the original proposal, despite requiring some additional regularity conditions to

work in practice.

Even though analytic computation of the EIF is straightforward in the examples the

authors have considered and computerization is therefore not needed, we appreciate the im-

mense pedagogical value of their simple illustrations. Even in the context of the unrestricted

problem the authors have focused on, there are important problems in which deductive

estimation could be quite valuable in practice. One such problem concerns efficient estimation

of a bivariate survival function when the underlying pair of failure times is subject to bivariate

censoring known only to satisfy coarsening at random (Gill et al., 1997). In this problem,

the NPMLE exists but is inconsistent (Tsai et al., 1986). Although the induced model for
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the observed data is nonparametric, the EIF does not exist in closed form, rendering the

implementation and analysis of an efficient estimator challenging (van der Laan, 1996). As

such, this would seem to be a particularly interesting test case for the proposed method (or

any regularization thereof). In our opinion, validation of the deductive method in the context

of this problem could serve as truly compelling advertisement for the approach.

We believe it is neither yet within reach nor desirable to eliminate the analytic calculations

involved in the construction of efficient estimators. For example, without these calculations,

the verification of general regularity conditions (e.g., as listed by the authors in their Supple-

mentary Material) seems challenging for any deductive method, and so, such a method could

be prone to misuse. Further, the authors’ underlying assumption of pathwise differentiability

could also be violated in problems of interest. Nevertheless, we remain excited by the

stimulating conversation the authors have initiated with their work. We see in practice much

value to computerized efficient estimation, particularly in tandem with suitable theoretical

work, and we look forward to further research on this topic. Such research could, for example,

elucidate how computerized methods may be used to verify analytic computations of the EIF,

or how they may flag scenarios in which further analytic consideration would be especially

warranted, particularly when computation of the EIF is intractable.
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