
Adversarial Monte Carlo Meta-Learning
of

Optimal Prediction Procedures

Alex Luedtke (p)

This presentation builds on collaborations with:

Marco Carone (B)

Noah Simon (B)

Oleg Sofrygin (N)

Hongxiang Qiu (R)

Incheoul Chung (p)

p : Department of Statistics, University of Washington

B : Department of Biostatistics, University of Washington

N : Division of Research, Kaiser Permanente Northern California

R : Department of Statistics and Data Science, University of Pennsylvania

1

1 Setting and objectives

2 Adjudicating performance of an estimator

3 Adversarial Monte Carlo meta-learning (AMC)

4 Restricting to equivariant estimators

5 A useful equivariant neural network class

6 Numerical experiments

7 Concluding remarks

2

Setting

Let (X ,A,Y) ∼ P, where

X is a feature vector with support in Rq

A is a subsequent binary treatment

Y is a continuous outcome

Setting 1: Observe an iid dataset D := (Xi ,Yi)
n
i=1 and want to develop an

estimator of a regression function:

x 7→ EP [Y |X = x]

︸ ︷︷ ︸
θP (x)

.

Setting 2: Observe an iid dataset D := (Xi ,Ai ,Yi)
n
i=1 and want to develop an

estimator of a conditional average treatment effect (CATE) function:

x 7→ EP [Y |A = 1,X = x]− EP [Y |A = 0,X = x]

︸ ︷︷ ︸
∆P (x)

.

3

Setting

Let (X ,A,Y) ∼ P, where

X is a feature vector with support in Rq

A is a subsequent binary treatment

Y is a continuous outcome

Setting 1: Observe an iid dataset D := (Xi ,Yi)
n
i=1 and want to develop an

estimator of a regression function:

x 7→ EP [Y |X = x]︸ ︷︷ ︸
θP (x)

.

Setting 2: Observe an iid dataset D := (Xi ,Ai ,Yi)
n
i=1 and want to develop an

estimator of a conditional average treatment effect (CATE) function:

x 7→ EP [Y |A = 1,X = x]− EP [Y |A = 0,X = x]︸ ︷︷ ︸
∆P (x)

.

3

Estimators

Throughout, I’ll use “estimator” to refer to any map T from a dataset D to a
function mapping from features in Rq to R.

The set of allowable estimators will be denoted by T .

4

1 Setting and objectives

2 Adjudicating performance of an estimator

3 Adversarial Monte Carlo meta-learning (AMC)

4 Restricting to equivariant estimators

5 A useful equivariant neural network class

6 Numerical experiments

7 Concluding remarks

5

Mean squared error risk for estimating the regression function

For a given P, performance of an estimator T for estimating the regression
function will be adjudicated via its standardized mean-squared error:

R(T ,P) = EP

[∫
[T (D)(x)− θP(x)]

2

σ2
P

dP(x)

]
,

where σ2
P := VarP(Y − EP [Y |X]).

The standardization factor σ2
P is the semiparametric efficiency bound for

estimating EP [θP(X)] in a model where the marginal distribution of X is
known.

6

Mean squared error risk for estimating the regression function

For estimating the CATE, we use the following risk function:

R(T ,P) = EP

[∫
[T (D)(x)−∆P(x)]

2

σ2
P

dP(x)

]
,

where σ2
P := VarP

(
2A−1
P(A|X)

{Y − EP [Y |A,X]}
)
.

The standardization factor ν2
P is the semiparametric efficiency bound for

estimating EP [∆P(X)] in a model where the marginal distribution of X is
known.

7

Bayes and maximal risks

Because the true underlying distribution P is not known, the risk R(T ,P) is
not known either.

Instead, the performance of an estimator can be quantified via its Bayes risk
relative to the prior Π:

r(T ,Π) :=

∫
R(T ,P)Π(dP)

or its maximal risk over the statistical model P:

sup
P∈P

R(T ,P).

8

Γ-maximal risk

I’ll consider a compromise between the Bayes and maximal risks.

For a collection of priors Γ, I’ll use the Γ-maximal risk (Berger, 1985) :

sup
Π∈Γ

r(T ,Π).

When Γ is a singleton, the Γ-maximal risk is a Bayes risk.

When Γ is unrestricted, the Γ-maximal risk is the maximal risk.

9

Γ-minimax estimators

An estimator T ⋆ is called Γ-minimax if

sup
Π∈Γ

r(T ⋆,Π) = inf
T∈T

sup
Π∈Γ

r(T ,Π).

Problem: A closed-form expression for a Γ-minimax estimator is rarely known.

Solution: Use numerical methods to construct a Γ-minimax estimator.

10

Existing works

Here are some key existing works for numerically constructing Γ-minimax
estimators:

When Γ is unrestricted: Nelson (1966) and Kempthorne (1987)

When Γ is to a finite mixture of k fixed priors: Chamberlain (2000)

All above listed approaches assume that it is easy to derive the Bayes estimator
for a given prior, which may not be true in practice.

When Γ is a singleton: Hochreiter et al. (2001), Finn et al. (2017), and
Garnelo et al. (2018)

11

1 Setting and objectives

2 Adjudicating performance of an estimator

3 Adversarial Monte Carlo meta-learning (AMC)

4 Restricting to equivariant estimators

5 A useful equivariant neural network class

6 Numerical experiments

7 Concluding remarks

12

An iterative strategy for constructing a Γ-minimax estimator

Under conditions, Γ-minimax decision problems can be reformulated as
Bayesian decision problems under a least favorable prior (LFP):

maxΠminT r(T ,Π)︸ ︷︷ ︸
Bayes risk under LFP

= minTmaxΠr(T ,Π)︸ ︷︷ ︸
Γ-minimax risk

.

This suggests the following iterative learning scheme:

Two agents compete against each other as follows:

Game #1

The Statistician selects an estimator T .

13

An iterative strategy for constructing a Γ-minimax estimator

Under conditions, Γ-minimax decision problems can be reformulated as
Bayesian decision problems under a least favorable prior (LFP):

maxΠminT r(T ,Π)︸ ︷︷ ︸
Bayes risk under LFP

= minTmaxΠr(T ,Π)︸ ︷︷ ︸
Γ-minimax risk

.

This suggests the following iterative learning scheme:

Two agents compete against each other as follows:

Game #1

Nature selects a prior Π.
A distribution P is drawn from Π, a data set is drawn

from P, and the performance of T is evaluated.

13

An iterative strategy for constructing a Γ-minimax estimator

Under conditions, Γ-minimax decision problems can be reformulated as
Bayesian decision problems under a least favorable prior (LFP):

maxΠminT r(T ,Π)︸ ︷︷ ︸
Bayes risk under LFP

= minTmaxΠr(T ,Π)︸ ︷︷ ︸
Γ-minimax risk

.

This suggests the following iterative learning scheme:

Two agents compete against each other as follows:

Game #2

Having learned from previous game, the Statistician
selects an estimator T whose Bayes risk is

lower for Nature’s earlier prior.

13

An iterative strategy for constructing a Γ-minimax estimator

Under conditions, Γ-minimax decision problems can be reformulated as
Bayesian decision problems under a least favorable prior (LFP):

maxΠminT r(T ,Π)︸ ︷︷ ︸
Bayes risk under LFP

= minTmaxΠr(T ,Π)︸ ︷︷ ︸
Γ-minimax risk

.

This suggests the following iterative learning scheme:

Two agents compete against each other as follows:

Game #2

Having learned from previous game, Nature
seeks to select a less favorable prior Π for the

Statistician’s earlier estimator.

13

An iterative strategy for constructing a Γ-minimax estimator

Under conditions, Γ-minimax decision problems can be reformulated as
Bayesian decision problems under a least favorable prior (LFP):

maxΠminT r(T ,Π)︸ ︷︷ ︸
Bayes risk under LFP

= minTmaxΠr(T ,Π)︸ ︷︷ ︸
Γ-minimax risk

.

This suggests the following iterative learning scheme:

Two agents compete against each other as follows:

Game #2

A distribution P is drawn from Π, a data set is drawn
from P, and the performance of T is evaluated.

13

An iterative strategy for constructing a Γ-minimax estimator

Under conditions, Γ-minimax decision problems can be reformulated as
Bayesian decision problems under a least favorable prior (LFP):

maxΠminT r(T ,Π)︸ ︷︷ ︸
Bayes risk under LFP

= minTmaxΠr(T ,Π)︸ ︷︷ ︸
Γ-minimax risk

.

This suggests the following iterative learning scheme:

Two agents compete against each other as follows:

· · ·

13

An iterative strategy for constructing a Γ-minimax estimator

Under conditions, Γ-minimax decision problems can be reformulated as
Bayesian decision problems under a least favorable prior (LFP):

maxΠminT r(T ,Π)︸ ︷︷ ︸
Bayes risk under LFP

= minTmaxΠr(T ,Π)︸ ︷︷ ︸
Γ-minimax risk

.

This suggests the following iterative learning scheme:

Two agents compete against each other as follows:

Many games later. . .

Desired result: Both play optimally.
In particular, the Statistician selects a

Γ-minimax estimator.

13

Parameterizing the Statistician’s strategy

In our experiments, we have found it effective to let the class T of estimators
be a neural network class.

I’ll describe a particularly interesting neural network class later in this talk.

14

Parameterizing Nature’s strategy

When implementing our iterative scheme, we must specify a form for the prior
distribution.

At each iteration, we simulate a batch of distributions from the current prior.

Consequently, our procedure is easiest to implement when the prior is easy to
sample from.

One way of achieving this: At each step k, parameterize the prior as a
generator network Gg(k), indexed by g(k) ∈ Rw , that takes as input a source
of randomness Z ∼ PZ and outputs a distribution Gg(k)(Z).

15

Pseudocode for iterative scheme

For each P, we require access to a generator HP that takes as input a source of
randomness U ∼ PU and outputs data (X ,Y) that has distribution P.

1: initialize parameters t(1) and g(1) for the Statistician’s network and Nature’s network.

2: for k = 1 to K − 1 do

3: Sample Z ∼ PZ and let Pg(k) = Gg(k)(Z). ▷ Draw Pg(k) from current prior.

4: for j = 0 to n do ▷ Draw data from Pg(k).

5: Sample Uj ∼ PU and let (Xg(k),j ,Yg(k),j) = HPg(k)
(Uj).

6: end for

7: Let Dg(k) = (Xg(k),j ,Yg(k),j)
n
j=1. ▷ Define observed dataset.

8: Update the Statistician’s strategy:

t(k + 1) = t(k)− ηk∇t(k)L(Tt(k)(Dg(k))(Xg(k),0),Pg(k)).

9: Update Nature’s strategy:

g(k + 1) = g(k) + δk∇g(k)L
(
Tt(k)

(
Dg(k)

) (
Xg(k),0

)
,Pg(k)

)
.

10: end for

11: return the estimator Tt(K).

16

Improvements in performance of estimator constructed with AMC over time
when trained under fused lasso additive regression model (n = 500)

Our estimator essentially returned a constant upon initialization:

0 100 200 300 400 500
w0rank

2.5

0

2.5

5

7.5

yp
lot

17

Improvements in performance of estimator constructed with AMC over time
when trained under fused lasso additive regression model (n = 500)

Our estimator essentially returned a constant upon initialization:

0 100 200 300 400 500
w0rank

2.5

0

2.5

5

7.5

yp
lot

0 100 200 300 400 500
w0rank

4

2

0

2

4

6

yp
lot

0 100 200 300 400 500
w0rank

2.5

0

2.5

yp
lot

0 100 200 300 400 500
w0rank

5

2.5

0

2.5
yp

lot

17

Improvements in performance of estimator constructed with AMC over time
when trained under fused lasso additive regression model (n = 500)

After 2 hours, it learned to capture the linear trend:

0 100 200 300 400 500
w0rank

8

4

0

4

yp
lot

0 100 200 300 400 500
w0rank

2.5

0

2.5

5

yp
lot

0 100 200 300 400 500
w0rank

6

3

0

3

yp
lot

0 100 200 300 400 500
w0rank

8

4

0

4
yp

lot

17

Improvements in performance of estimator constructed with AMC over time
when trained under fused lasso additive regression model (n = 500)

After 6 hours, it began to learn nonlinear trends:

0 100 200 300 400 500
w0rank

3

0

3

6

yp
lot

0 100 200 300 400 500
w0rank

6

3

0

3

yp
lot

0 100 200 300 400 500
w0rank

5

0

yp
lot

0 100 200 300 400 500
w0rank

5

0

yp
lot

17

Improvements in performance of estimator constructed with AMC over time
when trained under fused lasso additive regression model (n = 500)

It continued improving over the next few hours. At 15 hours:

0 100 200 300 400 500
w0rank

6

3

0

3

yp
lot

0 100 200 300 400 500
w0rank

2.5

0

2.5

5

yp
lot

0 100 200 300 400 500
w0rank

4

2

0

2

yp
lot

0 100 200 300 400 500
w0rank

0

5

yp
lot

17

Improvements in performance of estimator constructed with AMC over time
when trained under fused lasso additive regression model (n = 500)

After several more days, our predictions look as follows:

0 100 200 300 400 500
w0rank

4

2

0

2

4

6

yp
lot

0 100 200 300 400 500
w0rank

5

2.5

0

2.5

5

yp
lot

0 100 200 300 400 500
w0rank

5

0

5

yp
lot

0 100 200 300 400 500
w0rank

3

0

3

6

yp
lot

17

Questions?

18

1 Setting and objectives

2 Adjudicating performance of an estimator

3 Adversarial Monte Carlo meta-learning (AMC)

4 Restricting to equivariant estimators

5 A useful equivariant neural network class

6 Numerical experiments

7 Concluding remarks

19

Overview of this section

Optimizing over a rich class of estimators T numerically is challenging.

If T1 ⊆ T contains a Γ-minimax estimator T ⋆, that is, an estimator for which

sup
Π∈Γ

r(T ⋆,Π) = inf
T∈T

sup
Π∈Γ

r(T ,Π),

then nothing should be lost by restricting the optimization to T1.

We’ve derived a Hunt-Stein-type theorem that provides the form of such a class
T1 in many problems.

20

Notation

On the upcoming slides, I’ll write an observed dataset in a regression problem
as d = (x , y).

x is an n × q design matrix.

y is an n × 1 vector of outcomes.

21

Suffices to focus on equivariant estimators in many regression problems

Theorem: Under conditions, there is a Γ-minimax estimator T ⋆ that satisfies
the following for all datasets (x , y) and evaluation points x0:

1 Invariance to permutations of observations: For all B ∈ Bn,

T ⋆(Bx ,By)(x0) = T ⋆(x , y)(x0),

where Bs denotes the collection of all s × s permutation matrices.

2 Invariance to permutations of features: For all B ∈ Bq,

T ⋆(xB, y)(x0B) = T ⋆(x , y)(x0).

3 Invariance to increasing affine transformations of features: The output
of T ⋆ remains unchanged if, for each feature j ∈ {1, 2, . . . , q}, an affine
transformation is applied to that feature.

4 Equivariance to increasing affine transformations of outcomes: For all
b > 0 and c ∈ R,

T ⋆(x , by + c)(x0) = bT ⋆(x , y)(x0) + c.

22

Example of invariance to permutations of observations

The estimator T ⋆ outputs the same prediction on

x y

2.5 3.1 4.8 7.8
5.8 1.2 0.9 3.6
4.9 6.6 2.8 4.6
1.9 0.7 1.9 9.0

x0

4.3 7.5 1.7

and

x y

5.8 1.2 0.9 3.6
2.5 3.1 4.8 7.8
1.9 0.7 1.9 9.0
4.9 6.6 2.8 4.6

x0

4.3 7.5 1.7

23

Example of invariance to permutations of features

The estimator T ⋆ outputs the same prediction on

x y

2.5 3.1 4.8 7.8
5.8 1.2 1.1 3.6
4.9 6.6 2.8 4.6
1.9 0.7 1.9 9.0

x0

4.3 7.5 1.7

and

x y

3.1 4.8 2.5 7.8
1.2 1.1 5.8 3.6
6.6 2.8 4.9 4.6
0.7 1.9 1.9 9.0

x0

7.5 1.7 4.3

24

Similar results hold for CATE estimation

A similar theorem can be derived for CATE estimation.

25

1 Setting and objectives

2 Adjudicating performance of an estimator

3 Adversarial Monte Carlo meta-learning (AMC)

4 Restricting to equivariant estimators

5 A useful equivariant neural network class

6 Numerical experiments

7 Concluding remarks

26

Summary of this section

In Luedtke et al. (2021), we introduced a neural network architecture to
parameterize the estimator T .

This estimator class satisfies all of the equivariance properties suggested by our
Hunt-Stein-type theorem.

Each estimator in this class sequentially transforms the data via the
composition of 4 functions, which we refer to as modules.

27

Summary of architecture: module 1 (Hartford et al., 2018)

Mean pool
the columns

Top: standardized
design matrix x

Bottom: matrix with
each column equal
to standardized y

28

Summary of architecture: module 1 (Hartford et al., 2018)

Mean pool
the columns

Top: standardized
design matrix x

Bottom: matrix with
each column equal
to standardized y

This module is invariant to permutations of the rows of its input.

28

Summary of architecture: module 1 (Hartford et al., 2018)

Mean pool
the columns

Top: standardized
design matrix x

Bottom: matrix with
each column equal
to standardized y

This module is invariant to permutations of the rows of its input.

28

Summary of architecture: module 1 (Hartford et al., 2018)

Mean pool
the columns

Top: standardized
design matrix x

Bottom: matrix with
each column equal
to standardized y

The module is invariant to permutations of the rows of its input.

28

Summary of architecture: module 1 (Hartford et al., 2018)

Mean pool
the columns

Top: standardized
design matrix x

Bottom: matrix with
each column equal
to standardized y

And equivariant to permutations of the columns.

28

Summary of architecture: module 1 (Hartford et al., 2018)

Mean pool
the columns

Top: standardized
design matrix x

Bottom: matrix with
each column equal
to standardized y

And equivariant to permutations of the columns.

28

Summary of architecture: module 1 (Hartford et al., 2018)

Mean pool
the columns

Top: standardized
design matrix x

Bottom: matrix with
each column equal
to standardized y

And equivariant to permutations of the columns.

28

Summary of architecture: module 2 (Zaheer et al., 2017)

This module is equivariant to permutations of the columns of its input.

29

Summary of architecture: module 2 (Zaheer et al., 2017)

This module is equivariant to permutations of the columns of its input.

29

Summary of architecture: module 2 (Zaheer et al., 2017)

This module is equivariant to permutations of the columns of its input.

29

Summary of architecture: returning a prediction at an evaluation point

Module 3

Append x0

Module 2 output

Evaluation point (x0)
centered and scaled
by empirical means and
standard deviations of
columns of design matrix

Mean pool the rows

• Pass through Module 4 (a multilayer perceptron)
• Scale output by standard deviation of y and shift

by its mean
• Return scaled output as prediction at x0

Module 3 is invariant to permutations of the columns of its input.

30

Summary of architecture: returning a prediction at an evaluation point

Module 3

Append x0

Module 2 output

Evaluation point (x0)
centered and scaled
by empirical means and
standard deviations of
columns of design matrix

Mean pool the rows

• Pass through Module 4 (a multilayer perceptron)
• Scale output by standard deviation of y and shift

by its mean
• Return scaled output as prediction at x0

Module 3 is invariant to permutations of the columns of its input.

30

Summary of architecture: returning a prediction at an evaluation point

Module 3

Append x0

Module 2 output

Evaluation point (x0)
centered and scaled
by empirical means and
standard deviations of
columns of design matrix

Mean pool the rows

• Pass through Module 4 (a multilayer perceptron)
• Scale output by standard deviation of y and shift

by its mean
• Return scaled output as prediction at x0

Module 3 is invariant to permutations of the columns of its input.

30

Summary of architecture: returning a prediction at an evaluation point

A nearly identical architecture works for CATE estimation.

31

1 Setting and objectives

2 Adjudicating performance of an estimator

3 Adversarial Monte Carlo meta-learning (AMC)

4 Restricting to equivariant estimators

5 A useful equivariant neural network class

6 Numerical experiments

7 Concluding remarks

32

Model for our experiments

Each distribution P ∈ P is indexed by a positive definite covariate matrix Σ
and a regression function θP in a set Θ, and

X ∼ MVN(010,Σ),

Y |X ∼ N
(
θP(X), 1

)
.

We consider several values of Θ, each indexed by a sparsity level
s ∈ {1, 2, . . . , 10}:

1 Linear regression:

Θlin
s =

{
x 7→ β⊤x : ∥β∥0 ≤ s, ∥β∥1 ≤ 5

}
.

2 Fused lasso additive model (FLAM) (Petersen et al., 2014):

Θflam
s =

{
x 7→

10∑
j=1

µj(xj) :
10∑
j=1

∥µj∥tv ≤ 10, µj ̸= 0 for at most s values of j

}
.

33

AMC implementation

Used the described neural network with a total of 26 hidden layers.

Total of ≈ 650k parameters.

Used AMC to construct each estimator over 1 million iterations.

1 Tesla V100 GPU per estimator.

Constructing each estimator took 3-5 days.

Though constructing an estimator is computationally expensive,
evaluating one is not.

When n = 500 and q = 10, each estimator can be evaluated and
predictions can be made in <0.05 seconds on a standard CPU.

34

Results for regression function estimation on benchmark datasets from the
UCI Machine Learning Repository

OLS Lasso AMC
Linear
(ours)

FLAM AMC
FLAM
(ours)

Stacked
Existing

Stacked
AMC
(ours)

Stacked
Both
(ours)

college 0.414 0.397 0.377 0.392 0.395 0.358 0.354 0.348

happiness 0.270 0.277 0.275 0.315 0.311 0.280 0.261 0.256

hitters 0.667 0.660 0.662 0.626 0.619 0.602 0.615 0.585

wine-red 0.768 0.737 0.746 0.826 0.776 0.737 0.737 0.731

wine-
white

0.833 0.814 0.824 0.899 0.860 0.809 0.815 0.802

35

Results for regression function estimation on benchmark datasets from the
UCI Machine Learning Repository

OLS Lasso AMC
Linear
(ours)

FLAM AMC
FLAM
(ours)

Stacked
Existing

Stacked
AMC
(ours)

Stacked
Both
(ours)

college 0.414 0.397 0.377 0.392 0.395 0.358 0.354 0.348

happiness 0.270 0.277 0.275 0.315 0.311 0.280 0.261 0.256

hitters 0.667 0.660 0.662 0.626 0.619 0.602 0.615 0.585

wine-red 0.768 0.737 0.746 0.826 0.776 0.737 0.737 0.731

wine-
white

0.833 0.814 0.824 0.899 0.860 0.809 0.815 0.802

35

Results for regression function estimation on benchmark datasets from the
UCI Machine Learning Repository

OLS Lasso AMC
Linear
(ours)

FLAM AMC
FLAM
(ours)

Stacked
Existing

Stacked
AMC
(ours)

Stacked
Both
(ours)

college 0.414 0.397 0.377 0.392 0.395 0.358 0.354 0.348

happiness 0.270 0.277 0.275 0.315 0.311 0.280 0.261 0.256

hitters 0.667 0.660 0.662 0.626 0.619 0.602 0.615 0.585

wine-red 0.768 0.737 0.746 0.826 0.776 0.737 0.737 0.731

wine-
white

0.833 0.814 0.824 0.899 0.860 0.809 0.815 0.802

35

Results for regression function estimation on benchmark datasets from the
UCI Machine Learning Repository

OLS Lasso AMC
Linear
(ours)

FLAM AMC
FLAM
(ours)

Stacked
Existing

Stacked
AMC
(ours)

Stacked
Both
(ours)

college 0.414 0.397 0.377 0.392 0.395 0.358 0.354 0.348

happiness 0.270 0.277 0.275 0.315 0.311 0.280 0.261 0.256

hitters 0.667 0.660 0.662 0.626 0.619 0.602 0.615 0.585

wine-red 0.768 0.737 0.746 0.826 0.776 0.737 0.737 0.731

wine-
white

0.833 0.814 0.824 0.899 0.860 0.809 0.815 0.802

35

Examples of AMC fits when trained to estimate the CATE

In ongoing experiments, we are showing that AMC can also be used to develop
performant estimators of the CATE function:

5

0

5

10
CA

TE
 Fu

nc
tio

n

2 1 0 1 2

5

0

5

10

2 1 0 1 2
Signal Feature

Black points are treated test points (A = 1) and grey points are untreated (A = 0).
36

1 Setting and objectives

2 Adjudicating performance of an estimator

3 Adversarial Monte Carlo meta-learning (AMC)

4 Restricting to equivariant estimators

5 A useful equivariant neural network class

6 Numerical experiments

7 Concluding remarks

37

Concluding remarks

Have presented a new approach to adversarially construct regression and CATE
function estimators.

AMC can also be used in more general statistical decision problems –
see Luedtke et al. (2020) and Qiu and Luedtke (2020).

Currently exploring using AMC to construct adaptive estimators in
regression/CATE estimation settings.

38

Works on AMC

A. Luedtke, M. Carone, N. Simon, and O. Sofrygin. “Learning to learn from
data: Using deep adversarial learning to construct optimal statistical
procedures”. In: Science Advances 6.9 (2020), eaaw2140

A. Luedtke, I. Chung, and O. Sofrygin. “Adversarial Monte Carlo
Meta-Learning of Optimal Prediction Procedures”. In: Journal of Machine
Learning Research 22.255 (2021), pp. 1–67

H. Qiu and A. Luedtke. “Adversarial meta-learning of Gamma-minimax
estimators that leverage prior knowledge”. In: Electronic journal of statistics
17.2 (2023), p. 1996

A. Luedtke and I. Chung. “Adversarial Monte Carlo Meta-Learning of
Conditional Average Treatment Effects”. In: Handbook of Statistical Methods
for Precision Medicine. Chapman and Hall/CRC, 2024, pp. 237–248

39

Thank you!

40

Acknowledgements

I’m grateful to the NIH for supporting this research through a
New Innovator Award (1 DP2 LM013340).

I’m also grateful to Amazon for supporting this research through an
AWS Machine Learning Research Award.

41

Complete Bibliography I

[1] J. O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer Science & Business Media, 1985.

[2] W. Nelson. “Minimax solution of statistical decision problems by iteration”. In: The Annals of Mathematical Statistics (1966),
pp. 1643–1657.

[3] P. J. Kempthorne. “Numerical specification of discrete least favorable prior distributions”. In: SIAM Journal on Scientific and
Statistical Computing 8.2 (1987), pp. 171–184.

[4] G. Chamberlain. “Econometric applications of maxmin expected utility”. In: Journal of Applied Econometrics 15.6 (2000),
pp. 625–644.

[5] S. Hochreiter, A. S. Younger, and P. R. Conwell. “Learning to learn using gradient descent”. In: International Conference on
Artificial Neural Networks. Springer. 2001, pp. 87–94.

[6] C. Finn, P. Abbeel, and S. Levine. “Model-agnostic meta-learning for fast adaptation of deep networks”. In: Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR. org. 2017, pp. 1126–1135.

[7] M. Garnelo et al. “Conditional neural processes”. In: International Conference on Machine Learning. PMLR. 2018, pp. 1704–1713.

[8] J. Hartford et al. “Deep models of interactions across sets”. In: International Conference on Machine Learning. PMLR. 2018,
pp. 1909–1918.

[9] M. Zaheer et al. “Deep sets”. In: Advances in neural information processing systems. 2017, pp. 3391–3401.

[10] A. Petersen, D. Witten, and N. Simon. “Fused lasso additive model”. In: Journal of Computational and Graphical Statistics 25.4
(2016), pp. 1005–1025.

[11] A. Luedtke et al. “Learning to learn from data: Using deep adversarial learning to construct optimal statistical procedures”. In:
Science Advances 6.9 (2020), eaaw2140.

[12] H. Qiu and A. Luedtke. “Adversarial meta-learning of Gamma-minimax estimators that leverage prior knowledge”. In: Electronic
journal of statistics 17.2 (2023), p. 1996.

[13] A. Luedtke, I. Chung, and O. Sofrygin. “Adversarial Monte Carlo Meta-Learning of Optimal Prediction Procedures”. In: Journal of
Machine Learning Research 22.255 (2021), pp. 1–67.

[14] A. Luedtke and I. Chung. “Adversarial Monte Carlo Meta-Learning of Conditional Average Treatment Effects”. In: Handbook of
Statistical Methods for Precision Medicine. Chapman and Hall/CRC, 2024, pp. 237–248.

[15] T. Lin, C. Jin, and M. Jordan. “On gradient descent ascent for nonconvex-concave minimax problems”. In: International
Conference on Machine Learning. PMLR. 2020, pp. 6083–6093.

42

Complete Bibliography II

[16] G. W. Brown. “Iterative solution of games by fictitious play”. In: Activity analysis of production and allocation 13.1 (1951),
pp. 374–376.

[17] I. M. Johnstone and K. B. MacGibbon. “Minimax estimation of a constrained Poisson vector”. In: The Annals of Statistics 20.2
(1992), pp. 807–831.

[18] E. Gourdin, B. Jaumard, and B. MacGibbon. “Global optimization decomposition methods for bounded parameter minimax risk
evaluation”. In: SIAM Journal on Scientific Computing 15.1 (1994), pp. 16–35.

[19] C. M. Schafer and P. B. Stark. “Constructing confidence regions of optimal expected size”. In: Journal of the American Statistical
Association 104.487 (2009), pp. 1080–1089.

[20] B. Bryan et al. “Efficiently computing minimax expected-size confidence regions”. In: Proceedings of the 24th international
conference on Machine learning. ACM. 2007, pp. 97–104.

43

Extra Slides

44

Implementing adversarial Monte Carlo meta-learning with other
optimization schemes

The algorithm on the preceding slide is a form of stochastic gradient descent
ascent (SGDA) (e.g., Lin et al., 2020).

Many variants are possible. Here are three examples:

Stochastic gradient descent with max oracle (Luedtke et al., 2020; Lin
et al., 2020): converges to a near-equilibrium point under conditions, but
computationally costly.

Stochastic extragradient methods (Mischenko, 2020): sometimes have
better convergence properties than does SGDA.

Fictitious play (Brown, 1951; Qiu and Luedtke, 2020): will converge
when Γ consists of mixtures of a fixed set of k priors.

45

Summary of key conditions for theorem

Γ is preserved under the following transformations:

1 Permutations of features: Π ∈ Γ and B ∈ Bq implies that Π ◦ f −1
1 ∈ Γ,

where f1(P) is the distribution of (BX ,Y) when (X ,Y) ∼ P.

2 Increasing affine transformations of features: Π ∈ Γ, b ∈ Rq, and
c ∈ (0,∞)q implies that Π ◦ f −1

2 ∈ Γ, where f (P) is the distribution of
(b + c ⊙ X ,Y) when (X ,Y) ∼ P.

3 Increasing affine transformations of outcome: Π ∈ Γ, b ∈ R, and c > 0
implies that Π ◦ f −1

3 ∈ Γ, where f (P) is the distribution of (X , b + cY)
when (X ,Y) ∼ P.

Additional technical regularity conditions can be found in Luedtke et al. (2021).

46

Ablation study: evaluating importance of permutation invariance

Fold-change in MSEs for modifications of AMC in the FLAM regression
settings, as compared to the performances of AMC FLAM under our proposed
architecture.

(a) Sparse signal

Not invariant to
permutations of:

Scenario 1 Scenario 2 Scenario 3 Scenario 4
n=100 500 100 500 100 500 100 500

observations 6.98 38.29 5.82 29.93 5.03 27.58 4.29 13.08
features 1.01 0.95 1.16 1.09 1.02 0.98 1.01 0.99

(b) Dense signal

Not invariant to
permutations of:

Scenario 1 Scenario 2 Scenario 3 Scenario 4
n=100 500 100 500 100 500 100 500

observations 1.86 14.68 1.69 8.60 1.97 14.20 1.51 4.70
features 1.05 2.55 0.99 1.98 1.09 3.02 1.04 1.67

47

Examples of AMC fits when trained under FLAM regression model
(n = 500) at sparsity level s = 1

4

0

4
Re

gr
es

sio
n

Fu
nc

tio
n

2 1 0 1 2

4

0

4

2 1 0 1 2
Signal Feature

The four regression functions displayed above are derived from the four scenarios considered in the

simulation study from Petersen et al. (2014).
48

Performance in FLAM regression simulations

Mean squared errors (MSEs) based on datasets of size n in FLAM regression
settings.

(a) Sparse signal (s = 1)

Scenario 1 Scenario 2 Scenario 3 Scenario 4
n=100 500 100 500 100 500 100 500

FLAM 0.44 0.12 0.47 0.17 0.38 0.11 0.51 0.19
AMC (ours) 0.34 0.12 0.18 0.06 0.27 0.10 0.17 0.08

(b) Denser signal (s = 4)

Scenario 1 Scenario 2 Scenario 3 Scenario 4
n=100 500 100 500 100 500 100 500

FLAM 0.59 0.17 0.65 0.24 0.53 0.16 0.76 0.36
AMC (ours) 1.20 0.15 0.47 0.08 0.87 0.12 0.30 0.09

49

Performance in sparse linear regression simulations

MSEs based on datasets of size n in linear regression settings.

(a) Sparse signal (s = 1)

Boundary Interior
n=100 500 100 500

OLS 0.12 0.02 0.12 0.02
Lasso 0.06 0.01 0.06 0.01
AMC (ours) 0.02 <0.01 0.11 0.04

(b) Denser signal (s = 5)

Boundary Interior
n=100 500 100 500

OLS 0.13 0.02 0.13 0.02
Lasso 0.11 0.02 0.09 0.02
AMC (ours) 0.10 0.02 0.08 0.02

50

Experiments evaluating AMC for estimation of the CATE

In preparation for a manuscript submission, I’m also in the process of running
numerical experiments evaluating AMC for CATE estimation.

These simulations are nearly identical to those already displayed, except:

1 A randomized treatment indicator A ∼ Bern(1/2) is observed.

2 Rather than assuming that the regression function x 7→ E [Y |X = x]
belongs to a linear regression or fused lasso additive model class, instead
assume that the outcome regressions x 7→ E [Y |A = 0,X = x] and
x 7→ E [Y |A = 1,X = x] both belong to such a class.

51

Performance for CATE estimation when outcome regression is linear

We evaluate performance when n = 500 and X ∼ MVN(010, Id) and
EP [Y |A = a,X = x] = 0.5β(2a− 1)x1, so that

∆P(x) = βx1.

For different choices of β, we’ll display the MSE along with two example fits on
a dataset of size n = 500.

Performance compared to that of a plug-in estimator that estimates
outcome regressions with ordinary-least squares (OLS) regression.

Given that n ≫ q and the truth is linear in this setting, OLS regression is
expected to perform very well in this setting.

52

Performance for CATE estimation when outcome regression is linear
(β = 0.5)

MSE
OLS 0.017
AMC (ours) 0.015

3 2 1 0 1 2 3
Signal Feature

6

3

0

3

6

CA
TE

 E
st

im
at

e

AMC (ours) OLS
3 2 1 0 1 2 3

Signal Feature

6

3

0

3

6

CA
TE

 E
st

im
at

e

AMC (ours) OLS

53

Performance for CATE estimation when outcome regression is linear (β = 1)

MSE
OLS 0.017
AMC (ours) 0.012

3 2 1 0 1 2 3
Signal Feature

6

3

0

3

6

CA
TE

 E
st

im
at

e

AMC (ours) OLS
3 2 1 0 1 2 3

Signal Feature

6

3

0

3

6

CA
TE

 E
st

im
at

e

AMC (ours) OLS

54

Performance for CATE estimation when outcome regression is linear (β = 2)

MSE
OLS 0.017
AMC (ours) 0.015

3 2 1 0 1 2 3
Signal Feature

6

3

0

3

6

CA
TE

 E
st

im
at

e

AMC (ours) OLS
3 2 1 0 1 2 3

Signal Feature

6

3

0

3

6

CA
TE

 E
st

im
at

e

AMC (ours) OLS

55

Performance for CATE estimation when outcome regression is linear (β = 4)

MSE
OLS 0.017
AMC (ours) 0.024

3 2 1 0 1 2 3
Signal Feature

6

3

0

3

6

CA
TE

 E
st

im
at

e

AMC (ours) OLS
3 2 1 0 1 2 3

Signal Feature

6

3

0

3

6

CA
TE

 E
st

im
at

e

AMC (ours) OLS

56

Example of invariance to increasing affine transformations of features

The estimator T ⋆ outputs the same prediction on

x y

2.5 3.1 4.8 7.8
5.8 1.2 1.1 3.6
4.9 6.6 2.8 4.6
1.9 0.7 1.9 9.0

−1 +2 ×2−1

x0

4.3 7.5 1.7

−1 +2 ×2−1

and

x y

1.5 5.1 8.6 7.8
4.8 3.2 1.2 3.6
3.9 8.6 4.6 4.6
0.9 2.7 2.8 9.0

x0

3.3 9.5 2.4

57

Example of equivariance to increasing affine transformations of outcome

If the estimator T ⋆ outputs 2 on

x y

2.5 3.1 4.8 7.8
5.8 1.2 0.9 3.6
4.9 6.6 2.8 4.6
1.9 0.7 1.9 9.0

×0.5+3

x0

4.3 7.5 1.7

then it outputs 2×0.5 + 3 = 4 on

x y

2.5 3.1 4.8 6.9
5.8 1.2 0.9 4.8
4.9 6.6 2.8 5.3
1.9 0.7 1.9 7.5

x0

4.3 7.5 1.7

58

Similar Hunt-Stein-type theorem holds for CATE estimation

A similar Hunt-Stein-type theorem can be derived for CATE estimation.

The only condition that changes is that, rather than having that

T ⋆(x , a, by + c)(x0) = bT ⋆(x , a, y)(x0) + c

for all b ∈ R and c > 0, we have that

T ⋆(x , a, by + c)(x0) = bT ⋆(x , a, y)(x0).

This makes sense in light of the fact that

E [bY + c|A = 1,X]− E [bY + c|A = 0,X] = b (E [Y |A = 1,X]− E [Y |A = 0,X]) .

59

Desirable features of architecture

Can be evaluated in settings where there are different numbers of observations
n and features q than were used during training.

Computational and space complexity of evaluating estimator are both O(nq).

60

Existing work when Γ is unrestricted (1/2)

1966: Nelson described an algorithm to iteratively construct unfavorable priors
as a mixture between the current prior and a numerically derived less favorable
prior.

1987: Kempthorne proposed a similar algorithm for the special case that the
statistical model is one-dimensional. This algorithm iteratively updates discrete
priors with finite support and reduces computational burden by allowing the
support to shrink at each iteration.

Both of the above works provided proofs that the proposed estimators converge
to the minimax optimal estimator as the number of iterations grows.

1992: Johnstone and MacGibbon present a related method for deriving the
least favorable prior when estimating the mean of a Poisson vector.

1994: Gourdin, Jaumard, and MacGibbon present a global optimization
procedure for identifying this discretely-supported least favorable prior.

All above listed approaches assume that it is easy to derive the Bayes
estimator for a given discrete prior.

61

Existing work when Γ is a finite mixture class (2/2)

2000: Chamberlain formulates an algorithm for general decision problems that
involves solving a convex optimization problem.

2006: Schafer and Stark provide a method for constructing confidence regions
of minimal size (published in JASA in 2009). An optimal strategy is found via
fictitious play.

2007: Bryan, McMahan, Schafer, and Schneider show that leveraging the
near-sparsity of the problem can more efficiently lead to a solution.

If the number of support points for the prior distribution is large, then it
will be difficult to derive the least favorable prior distribution in Γ and to
compute the corresponding Bayes estimator.

62

	Setting and objectives
	Adjudicating performance of an estimator
	Adversarial Monte Carlo meta-learning (AMC)
	Restricting to equivariant estimators
	A useful equivariant neural network class
	Numerical experiments
	Concluding remarks

