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Background and our objective



Background on generative modeling

Generative modeling: a paradigm for generating synthetic data that looks like existing data

Underlies many of the recent advances in Al

m Chatbots’ training begins by having them try to imitate a large corpus of text (internet
text, books, etc.)

m Image models are trained to imitate large collections of images
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Example: generating new faces

Generative models use existing data
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Images from the Chicago Face Database (Ma et al., 2015).



Example: generating new faces

Generative models use existing data to generate similar synthetic data.
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Images from the Chicago Face Database (Ma et al., 2015).



Goal today

Goal today: present a general approach for generating synthetic counterfactual data



Goal today

Goal today: present a general approach for generating synthetic counterfactual data

In our example: generate counterfactual images of people smiling




Example of confounding in CelebA (Liu et al., 2015)

Lipstick Makeup Female* Earrings No Beard Blonde

Smiling 56% 47% 65% 26% 88% 18%
Not Smiling  38% 30% 52% 12% 79% 12%
Overall 47% 38% 58% 19% 83% 15%

*Perceived binary sex, as labeled by human annotators.



Example of confounding in CelebA (Liu et al., 2015)

Lipstick Makeup Female Earrings No Beard Blonde
Smiling 56% 47% 65% 26% 88% 18%
Overall 47% 38% 58% 19% 83% 15%

When trained on only smiling faces, generative models overrepresent some attributes,
failing to reflect how the population would look if everyone smiled.



Oracle problem: all observations receive the intervention



Example: generating smiling faces

Ideally: Would intervene and collect a dataset of counterfactual images
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Example: generating smiling faces

Ideally: Would intervene and collect a dataset of counterfactual images
m A generative model could then produce synthetic counterfactual smiling images
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Oracle problem: all counterfactuals observed

For the moment, we suppose we have direct access counterfactuals.

m Dataset consists of Y, Y5, ..., Y Kp
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Oracle problem: all counterfactuals observed

For the moment, we suppose we have direct access counterfactuals.

m Dataset consists of Y, Y5, ..., Y Kp

Generative modeling problem: learn a transport map
m Input: noise U ~ TI1, for T a known distribution
m Output: ¢p(U), which has distribution

10



Oracle problem: all counterfactuals observed

For the moment, we suppose we have direct access counterfactuals.

m Dataset consists of Y, Y5, ..., Y Kp

Generative modeling problem: learn a transport map
m Input: noise U ~ TI1, for T a known distribution
m Output: ¢p(U), which has distribution

Simple example: if Y* is 1d, then can take:
m [1 = Uniform|0, 1]

m ¢op = P's inverse CDF, Fgl
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Example: autoregressive language models (Graves, 2013)
Y* =(Y*(1), Y*(2),..., Y*(d)) is a sequence of tokens:
DoubleGen: Debiased Generative Modeling of Counterfactuals

(10948, 11757, 25, 18659, 72, 1882, 4140, 1799, 129776, 328, 32251, 69, 19106, 82)

Tokenized sequence displayed as in https://platform.openai.com/tokenizer
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Example: autoregressive language models (Graves, 2013)

A simple language model can be trained as follows:

1) Statistical learning to estimate

Op € argmin Ep [€(6, Y™)]
0
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Double
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A simple language model can be trained as follows:

1) Statistical learning to estimate
Op € argmin Ep [€(6, Y™)],
0

where £(0,y*) = —log Po{y*(1)} — ...
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Example: autoregressive language models (Graves, 2013)

DoubleGen

(10948, 11757

A simple language model can be trained as follows:

1) Statistical learning to estimate

Op € argmin Ep [€(6, Y™)],
0

where £(0,y*) = —log Pa{y*(1)} — log Pe{ly*(2) | y*(1)}
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Example: autoregressive language models (Graves, 2013)

DoubleGen:

(10948, 11757, 25

A simple language model can be trained as follows:
1) Statistical learning to estimate
Op € argmin Ep [€(6, Y™)],
0
where £(0, y*) = —log Po{y*(1) } — log Po{y"(2) [ y*(1) }
—log Po{y*(3) | ¥*(2). y*(1)} — - ..
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Example: autoregressive language models (Graves, 2013)

A simple language model can be trained as follows:

1) Statistical learning to estimate

Op € argmin Ep [€(0, Y™)],
0

where (0, y*) = —log Pp{y*(1) } — log Po{y*(2) | y*(1)}
—log Po{y*(3) | y*(2), y*(1) } — ...
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Example: autoregressive language models (Graves, 2013)

A simple language model can be trained as follows:

1) Statistical learning to estimate

Op € argmin Ep [€(0, Y™)],
0

where (0, y*) = —log Pp{y*(1) } — log Po{y*(2) | y*(1)}
—log Po{y*(3) | y*(2), y*(1) } — ...

2) Ancestral sampling of tokens according to P5( - |-)
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Class of generative models considered today

Outcome type (Y*)

Autoreg. model  [k]9 (token seq.)
Diffusion model R? (e.g., image)
Flow matching RY (e.g., image)

Algorithm Oracle counterfactual generative modeling

. id
Require: counterfactual data Y{, Y5,..., Y <~ P

12



Class of generative models considered today

Outcome type (Y*) Hypothesis (0p) Loss (¢)

Autoreg. model  [k]9 (token seq.) next-token prob.  cross-entropy
Diffusion model RY (e.g., image) score denoising score matching
Flow matching  RY (e.g., image) vector field velocity matching

Algorithm Oracle counterfactual generative modeling

. iid
Require: counterfactual data Y7, Ys,..., Y  ~ P
Require: choice of generative modeling framework: hypothesis space, loss, sampler

1: Risk minimization: define 6, via R} (0) := £ >°7 | ((0, Y?)
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Class of generative models considered today

Outcome type (Y*) Hypothesis (fp) Loss (¢) Sampler (7)
Autoreg. model  [k]9 (token seq.) next-token prob.  cross-entropy ancestral
Diffusion model RY (e.g., image) score denoising score matching  SDE solver
Flow matching  RY (e.g., image) vector field velocity matching ODE solver

Algorithm Oracle counterfactual generative modeling

Require: counterfactual data Y7, Y5, ..., Y Kp
Require: choice of generative modeling framework: hypothesis space, loss, sampler
1: Risk minimization: define 0, via R;(0) := £ 37, £(0, Y7")

2: return transport map ¢, := 7(0,)
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Factual problem: some observations don't receive the intervention
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Observed data

Dataset consists of n iid copies of (X, A, Y) ~ P with
m X = baseline covariates
m A= 3" — received intervention

m Y = outcome

Suppose P's identifiable through the G-formula:

IP’{Y*ey}:/P{Y€y|A:a*,X:x}PX(dx) for all sets
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Modifying oracle algorithm for factual problem

Algorithm Oracle counterfactual generative modeling generative modeling

. iid
Require: counterfactual data Y7, Y5, ..., Y ~P

Require: choice of generative modeling framework

1: Risk minimization: define 6, via the empirical risk
Rx(0) := 1 i@(@ YY)
n T n P s T

2: return transport map ¢, := 7(6,)
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Modifying oracle algorithm for factual problem

Algorithm Oracle counterfactual generative modeling generative modeling

. iid
Require: counterfactual data Y7, Y5, ..., Y <P

Require: choice of generative modeling framework

1: Risk minimization: define 6, via the empirical risk
Rx(0) := }zn:[(ﬁ YY)
S i=1 R

2: return transport map ¢, := 7(6,)
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15



Modifying oracle algorithm for factual problem

Algorithm DoubleGen: Doubly robust generative modeling
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Modifying oracle algorithm for factual problem

Algorithm DoubleGen: Doubly robust generative modeling

Require: factual data (Xi, A1, Y1), (X2, Az, Y2), ..., (Xn, An, Ya) ~ P

15



Modifying oracle algorithm for factual problem

Algorithm DoubleGen: Doubly robust generative modeling

Require: factual data (Xi, A1, Y1), (X2, Az, Y2), ..., (X, An, Ya) Y p

Require: choice of generative modeling framework

15



Modifying oracle algorithm for factual problem

Algorithm DoubleGen: Doubly robust generative modeling

Require: factual data (Xi, A1, Y1), (X2, Az, Y2), ..., (X, An, Ya) Y p
Require: choice of generative modeling framework

1: Risk minimization: define 6, via the empirical risk

R*(0) := %ié’(ﬁ, Y7)
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Modifying oracle algorithm for factual problem

Algorithm DoubleGen: Doubly robust generative modeling

Require: factual data (X1, A1, Y1), (X2, Ao, Y2), ... (Xn, An, Ya) ~ P

Require: choice of generative modeling framework
1: Risk minimization: define 8, via the AIPW* risk

Ral0) =+ > [ [1(Ar = #)an 0006, ¥0) — €0, ul X))} + 06, wn(u )] (k)

*AIPW = augmented inverse probability weighted (Robins et al., 1994)
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Estimating nuisances

RA(0) = %Z/ [1(A; = a")an(X){ €8, Yi) — €0, n(ulXi)) } + €08, 4n(u] X)) M(du)

Two nuisances must be estimated

1Zubizarreta (2015), Chernozhukov et al. (2021)
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Estimating nuisances

Ri0) =" / [1(A; = a*)an(X) {0, Vi) — €00, 0a(ulX0)) } + €060, (ulX:))] N1(dlu)

Two nuisances must be estimated:

1) Inverse propensity:! stable balancing weights, Riesz regression, logistic regression
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Estimating nuisances

Ral0) = 2 - [ (104 = 3")an(X) {16, Y5) = 8, 0 (u1X))} + 06,0, (X)) ()

Two nuisances must be estimated:
1) Inverse propensity:! stable balancing weights, Riesz regression, logistic regression

2) Outcome generative model: conditional generative model, k-nearest neighbors

1Zubizarreta (2015), Chernozhukov et al. (2021)
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Estimating nuisances

Ro0) = 1 3 [ [0 = 2")an(X) {00, ¥0) = €8, 0 (u1X))} + 00, (X)) ()

Two nuisances must be estimated:
1) Inverse propensity:! stable balancing weights, Riesz regression, logistic regression

2) Outcome generative model: conditional generative model, k-nearest neighbors

IX = young manl

-

AR

1Zubizarreta (2015), Chernozhukov et al. (2021)
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Estimating nuisances

Ro0) = 1 3 [ [0 = 2")an(X) {00, ¥0) = €8, 0 (u1X))} + 00, (X)) ()

Two nuisances must be estimated:
1) Inverse propensity:! stable balancing weights, Riesz regression, logistic regression

2) Outcome generative model: conditional generative model, k-nearest neighbors

X = young man

1Zubizarreta (2015), Chernozhukov et al. (2021) 16



Relationship to existing literature
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Prior works on causal generative modeling

Iterative approaches: GANs (Kocaoglu et al., 2017), normalizing flows (Pawlowski et al.,
2020), VAEs (Karimi et al., 2020), diffusion models (Chao et al., 2023)
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Prior works on causal generative modeling

Covariates (X) Intervene (A = a*)

Iterative approaches: GANs (Kocaoglu et al., 2017), normalizing flows (Pawlowski et al.,
2020), VAEs (Karimi et al., 2020), diffusion models (Chao et al., 2023)



Prior works on causal generative modeling

Covariates (X) Intervene (A = a*) > Outcome (Y)

Iterative approaches: GANs (Kocaoglu et al., 2017), normalizing flows (Pawlowski et al.,
2020), VAEs (Karimi et al., 2020), diffusion models (Chao et al., 2023)



Prior works on causal generative modeling

Covariates (X) Intervene (A = a*) > Outcome (Y)

Iterative approaches: GANs (Kocaoglu et al., 2017), normalizing flows (Pawlowski et al.,
2020), VAEs (Karimi et al., 2020), diffusion models (Chao et al., 2023)

Joint generation: autoregressive flows (Khemakhem et al., 2021; Javaloy et al., 2024),
variational graph autoencoders (Sanchez-Martin et al., 2021), diffusion models
(Sanchez et al., 2022)
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Prior works on causal generative modeling

Outcome (Y)

Iterative approaches: GANs (Kocaoglu et al., 2017), normalizing flows (Pawlowski et al.,
2020), VAEs (Karimi et al., 2020), diffusion models (Chao et al., 2023)

Joint generation: autoregressive flows (Khemakhem et al., 2021; Javaloy et al., 2024),
variational graph autoencoders (Sanchez-Martin et al., 2021), diffusion models
(Sanchez et al., 2022)

Direct approaches: inverse propensity weighting (Wu et al., 2024)
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Contributions relative to existing causal generative modeling works

Unlike DoubleGen, existing approaches:

m Mostly only apply to specific generative modeling paradigms
m Lack convergence guarantees

m Are only singly robust
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Prior works that use AIPW risk estimators

Conditional estimands

m Average treatment effect (‘DR-learner’) (van der Laan, 2006; van der Laan, 2013;
Luedtke and van der Laan, 2016; Oprescu et al., 2019; Kennedy, 2023)

m Classifier under selection bias (Rotnitzky, Faraggi, et al., 2006)
m Survival function (Rubin et al., 2006)
m Longitudinal mean (Rotnitzky, Robins, et al., 2017; Luedtke, Sofrygin, et al., 2017)

General estimands
m Ensemble learners (van der Laan and Dudoit, 2003)
m General learning algorithms (Foster et al., 2023)
m Stochastic gradient descent (Yu et al., 2025)

20



Theoretical guarantees
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Main objective of theory

Make it as easy as possible to port over existing results from the generative modeling
literature, with minimal modification

Diffusion Models are Minimax Optimal Distribution Estimators FLOW MATCHING ACHIEVES ALMOST MINIMAX OPTI-

Abstract

While efficient distribution learing is no doubt
behind the groundbreaking success of diffusion
modeling, its theoretical guarantees are quite lim-
ited. In this paper, we provide the first rigoror
analysis on approximation and generalization abil-
ities of diffusion modeling for well-known func-
tion spaces. The highlight of this paper is that
when the true density function belongs to the
Besov space and the empirical score matching
Toss is properly minimized, the generated data
distribution achieves the nearly minimax optimal
estimation ates in the total variation distance and
in the Wasserstein distance of order one. Further-
more, we extend our theory to demonstrate how
diffusion models adapt to low-dimensional data
distributions. We expect these results advance
theoretical understandings of diffusion modeling
and its ability to generate verisimilar outputs

Kazusato Oko'? Shunta Akiyama' Taiji Suzuki' 2

of the backward process is dependent on the data distribu-
tion, specifically on the gradient of the logithmic densiy
score) at each time of the forward proces;

Tn practice, however, we have only access to the true dist
bution through a finite number of sample. For this reasor
the score of the diffusion process from the empirical dis-
tribution i utlized instead (Vincent, 2011; Sohl-Dickstein
etal., 2015; Song & Ermon, 2019). Moreover, for compu-
tational efficiency, the empirical score is further replaced
by a neural network (score network) that is close 1o the
empirical score in terms of some loss function using score
matching techniques (Hyvarinen & Dayan, 2005; Vincent,
2011). In this way, diffusion modeling implicitly learns the
true distribution via leaming of the empirical score.

‘Then the following natural question immediately aris
Is diffusion modeling a good distribution estimator? In
other words, how can the estimation error of the generated
data distribution be explicitly bounded by the number of the
training data and in a data structure dependent way?

MAL CONVERGENCE

Kenji Fukumizu Taiji Suzuki

“The Insitte of Statsical Mathematis/Preferred Networks  Universiyof Tokyo/RIKEN ATP
Tokyo, Japan Tokyo, Japan
fukumizu@ism.ac. jp taijiémist.i.u-tokyo.ac
Noboru Isobe Kazusato Oko

University of Tokyo University of Tokyo/RIKEN AIP

Tokyo, Japan Tokyo, Japan

nobo0409Eg.ecc.u-tokyo.ac.jp  oko-kazusato@g.ecc.u-tokyo.ac.

Masanori Koyama
Preferred Networks/University of Tokyo
Tokyo. Japan

masanori . koyama@ueblab.

kyo. 2

ABSTRACT

Flow matching (M) has gained significant attention as a simulation-fee gener-
ative model. Unlike diffusion models, which are based on stochastic differential
Cauations, FM employs a Smple approach by solving an ordimry differentia
cqution with a ntal condion rom .ol dissibuton,hus scamiinng he
sample generton poces. This paper discsses thecomvesene properis of FM
forlarge samplesize underthe p-Wasserstein disance. We esabis that FM can
achieve an almost minimax opnml convergence rate for 1 < p < 2, presenting
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Two-step analysis

Goal: Show the true and estimated counterfactual distributions are probably close:

Divergence(P, Py, ) < Rate(n) w.h.p.

Strategy:

1) Bound divergence by (transformation of) generalization error
GenError(0) := Ep[4(0, Y*)] — ming-Ep[¢(6*, Y™)]

2) Bound generalization error

23



Step 1: divergences already bounded in non-causal literature!

Prior works already showed that

Divergence(P, Py) < GenError(6)? + €
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Step 1: divergences already bounded in non-causal literature!

Prior works already showed that

Divergence(P, Py) < GenError(6)? + e

Divergence b €

Flow matching’!
Diffusion model®
Autoreg. language model®

2-Wasserstein ~ 1/2 0
Total variation 1/2  Trunc. error

KL divergence 1 0

1Benton et al. (2023), 20ko et al. (2023), 3Definition of KL divergence
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Step 2: generalization bound

Provide generalization bound for empirical risk minimizer:

6, = argmin AIPW risk(0; ap, 1)
6O
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Step 2: generalization bound

Provide generalization bound for empirical risk minimizer:

0, = argmin AIPW risk(0; a, s
6O

5 0 [ (1A= 2) an(X3) {00, Vi) — €00, a(ulX3)) } + €00, n(ulXi))] N (du)
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n
gco "
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n
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Generalization bound (informal): Under standard statistical learning conditions for
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GenError(6,) S infpee GenError(6) + Rate(n, Size(©)) + Error(ay,) Error(v,) .
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Leading terms match a generalization bound for the oracle problem.
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Step 2: generalization bound

Provide generalization bound for empirical risk minimizer:
6, = argmin AIPW risk(0; ap, 1)
[USC)
Will relate it to one for the oracle problem:
0r = argmin2>°7 40, Y7)

n
gco "

Generalization bound (informal): Under standard statistical learning conditions for

the oracle problem, with probability at least 1 — 1/n,

GenError(6,) < infgpco GenError(0) + Rate(n, Size(©)) + Error(a,) Error(i,)

Leading terms match a generalization bound for the oracle problem.

Final term is doubly robust.
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Total variation bound for DoubleGen diffusion models

Diffusion Models are Minimax Optimal Distribution Estimators

Kazusato Oko ' > Shunta Akiyama' Taiji Suzuki '>

Following Oko et al., we give conditions under DoubleGen diffusion models with scores
learned via a neural network class satisfy

TV(P, Py, ) < |og17/2(n) nTEE 4 Error(a,) Error(1,)

with high probability.
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Experiments
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Generating counterfactual smiling faces

Lipstick Makeup Female Earrings No Beard Blonde
Smiling 56% 47% 65% 26% 88% 18%
Not Smiling  38% 30% 52% 12% 79% 12%
Overall 47% 38% 58% 19% 83% 15%

Trained two diffusion models with denoising score matching, using:
1) Smiling instances and a standard loss.

2) All instances and a DoubleGen loss.
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Generating counterfactual smiling faces

Lipstick Makeup Female Earrings No Beard Blonde
Smiling 56% 47% 65% 26% 88% 18%
Overall 47% 38% 58% 19% 83% 15%
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Quantitative assessment: Fréchet and kernel ArcFace distances

FAD| KADJ|
Naive 1.00 1.00
Plug-in 0.87 0.68
B.";’t’ IPW 0.88  0.71
re DoubleGen  0.86  0.68
Outcome Plug-in 1.90 2.17
wrong DoubleGen 0.86  0.68
Propensity IPW 0.93 0.71
wrong DoubleGen  0.85 0.56

Both wrong  DoubleGen  1.01 0.79
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DoubleGen typically
m outperforms the naive method trained only with smiling instances
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FAD| KADJ|
Naive 1.00 1.00
Plug-in 0.87 0.68
B.";’t’ IPW 0.88  0.71
re DoubleGen ~ 0.86  0.68
Outcome Plug-in 1.90 2.17
wrong DoubleGen 0.86  0.68
Propensity IPW 0.93 0.71
wrong DoubleGen  0.85 0.56

Both wrong  DoubleGen  1.01 0.79

DoubleGen typically
m outperforms the naive method trained only with smiling instances
m outperforms singly robust methods



Generating counterfactual Amazon reviews (Hou et al., 2023)

Semi-synthetic experiment, with gold-standard counterfactual samples available from P
m Baseline covariates: product category and other metadata

m Intervention: synthetic
m lower propensity for some product categories: books, movies/ TV, automotive
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Generating counterfactual Amazon reviews (Hou et al., 2023)

Semi-synthetic experiment, with gold-standard counterfactual samples available from P
m Baseline covariates: product category and other metadata

m Intervention: synthetic
m lower propensity for some product categories: books, movies/ TV, automotive

m Outcome: Amazon product review

5 stars: I am not sure what type of Keurig I have but this works great in
it! It sits up high enough so it does not get punctured like a regular
k-cup does.

3 stars: I am a big fan of Andrew Lloyd Webber’s musicals. Cats contains
the very well-known song "Memory." Otherwise, there aren’t many memorable
songs in this musical. It also is a revue, which means that there is no
real plot.
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Autoregressive language model setup

We use low-rank adaptation (LoRA)! to finetune Llama-3.2-1B2

m 5.5M trainable parameters

1Hu et al. (2022), 2Dubey et al. (2024)
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Naive approach and DoubleGen often generated similar reviews

5 stars: My son loves to use the game and can play for hours. Thanks for a
fantastic app purchase!

5 stars: My son loves to use the game and can play for hours. Thanks for a
fantastic game purchase.

5 stars: These are a must if you want to look great in a skirt. They are
very durable. Will save me months and months of having to go buy new ones.

5 stars: These are a must if you want to look great in your shorts. They
are very durable. Will save you money and time when it’s time to order
more.

32



Naive approach underused the word ‘book’ (0.24% of reviews)
DoubleGen used it with similar frequency as in test set (4.4%)

5 stars: This is amazing!!!! It’s durable, easy to use, I love it and it
came with all the batteries

5 stars: This book was amazing. The author took the time get to know and
truly connect with both the characters.

3 stars: It’s an OK quality mask. The design and the eye holes are nice.
However, the straps on the back are not adjustable at all so it’s hard to
keep it on your face or to get the bottom part on straight.

3 stars: It’s an OK book. The first and the last chapters are rather
repetitive. The characters are interesting and likable.
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Equivalence with missing data problems

Xiab Y

Xunlab

DoubleGen can be used to address outcomes missing at random:
m A=a* = outcome observed
m A# a* — outcome missing

AIPW risk estimator allows missing outcomes to be predicted by any algorithm
m E.g., a pretrained foundation model

Special case: MCAR outcomes from prediction-powered inference*

*Angelopoulos et al. (2023)



Reduced-Entropy Sampling for Language Models

Language models often generate better text by oversampling high-probability tokens*

Model then no longer targets counterfactual distribution P

m Instead targets a lower-entropy variant

DoubleGen can still be used to estimate the transport maps for these schemes

*Caccia et al. (2018), Fan et al. (2018), Holtzman et al. (2019)
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Extending DoubleGen to joint/conditional counterfactual sampling

Jointly with a subvector V of features X:
m Run the algorithm with modified outcome Y’ = (V,Y).

Conditionally on a subvector V of features X:

m Requires loss ¢ to depend on the condition v, as in text-to-image diffusion models*

In both cases, the analysis is nearly identical and yields a similar generalization bound.

*Saharia et al. (2022), Rombach et al. (2022)
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Thank you!
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Identification conditions

1) Positivity: P(A=2a*|X) >0 ass.
2) Ignorability: Y* L A| X
3) Consistency: Y = Y* whenever A = A*
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Violation of conditions: multiple versions of treatment

If there are multiple versions of treatment, then G-formula instead identifies
m counterfactual distribution under a stochastic intervention (VanderWeele et al., 2013)
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