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Background and our objective

Oracle problem: all observations receive the intervention

Factual problem: some observations don’t receive the intervention

Relationship to existing literature

Theoretical guarantees

Experiments

Discussion
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Background on generative modeling

Generative modeling: a paradigm for generating synthetic data that looks like existing data

Underlies many of the recent advances in AI

Chatbots’ training begins by having them try to imitate a large corpus of text (internet
text, books, etc.)

Image models are trained to imitate large collections of images
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Example: generating new faces

Generative models use existing data

to generate similar synthetic data.

⇓

Images from the Chicago Face Database (Ma et al., 2015).
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Goal today

Goal today: present a general approach for generating synthetic counterfactual data

In our example: generate counterfactual images of people smiling
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Example of confounding in CelebA (Liu et al., 2015)

Lipstick Makeup Female∗ Earrings No Beard Blonde

Smiling 56% 47% 65% 26% 88% 18%
Not Smiling 38% 30% 52% 12% 79% 12%

Overall 47% 38% 58% 19% 83% 15%

When trained on only smiling faces, generative models overrepresent some attributes,
failing to reflect how the population would look if everyone smiled.

∗Perceived binary sex, as labeled by human annotators. 7
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Example: generating smiling faces

Ideally: Would intervene and collect a dataset of counterfactual images

A generative model could then produce synthetic counterfactual smiling images

⇓
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Oracle problem: all counterfactuals observed

For the moment, we suppose we have direct access counterfactuals.

Dataset consists of Y ⋆
1 ,Y

⋆
2 , . . . ,Y

⋆
n

iid∼ P

Generative modeling problem: learn a transport map

Input: noise U ∼ Π, for Π a known distribution

Output: ϕP(U), which has distribution P

Simple example: if Y ⋆ is 1d, then can take:

Π = Uniform[0, 1]

ϕP = P’s inverse CDF, F−1
P
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Example: autoregressive language models (Graves, 2013)

Y ⋆ = (Y ⋆(1),Y ⋆(2), . . . ,Y ⋆(d)) is a sequence of tokens:

DoubleGen: Debiased Generative Modeling of Counterfactuals

(10948, 11757, 25, 18659, 72, 1882, 4140, 1799, 129776, 328, 32251, 69, 19106, 82)

A simple language model can be trained as follows:

1) Statistical learning to estimate

θP ∈ argmin
θ

EP [ℓ(θ,Y
⋆)]

,

where ℓ(θ, y⋆) = − logPθ{y⋆(1)}

− logPθ{y⋆(2) | y⋆(1)}
− logPθ{y⋆(3) | y⋆(2), y⋆(1)} − . . .

2) Ancestral sampling of tokens according to Pθ̂( · | · )

Tokenized sequence displayed as in https://platform.openai.com/tokenizer
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Class of generative models considered today

Outcome type (Y ⋆)

Hypothesis (θP) Loss (ℓ) Sampler (τ)

Autoreg. model [k]d (token seq.)

next-token prob. cross-entropy ancestral

Diffusion model Rd (e.g., image)

score denoising score matching SDE solver

Flow matching Rd (e.g., image)

vector field velocity matching ODE solver

Algorithm Oracle counterfactual generative modeling

Require: counterfactual data Y ⋆
1 ,Y

⋆
2 , . . . ,Y

⋆
n

iid∼ P

Require: choice of generative modeling framework: hypothesis space, loss, sampler

1: Risk minimization: define θn via R⋆
n (θ) :=

1
n

∑n
i=1 ℓ(θ,Y

⋆
i )

2: return transport map ϕn := τ(θn)
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Observed data

Dataset consists of n iid copies of (X ,A,Y ) ∼ P with

X = baseline covariates

A = a⋆ =⇒ received intervention

Y = outcome

Suppose P’s identifiable through the G-formula:

P{Y ⋆ ∈ Y} =

∫
P{Y ∈ Y |A = a⋆,X = x}PX (dx) for all sets Y

14



Modifying oracle algorithm for factual problem

Algorithm Oracle counterfactual generative modeling generative modeling

Require: counterfactual data Y ⋆
1 ,Y

⋆
2 , . . . ,Y

⋆
n

iid∼ P
Require: choice of generative modeling framework

1: Risk minimization: define θn via the empirical risk

R⋆
n (θ) :=

1

n

n∑
i=1

ℓ(θ,Y ⋆
i )

2: return transport map ϕn := τ(θn)
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Estimating nuisances

Rn(θ) =
1

n

n∑
i=1

∫ [
1(Ai = a⋆)αn(Xi )

{
ℓ(θ,Yi )− ℓ(θ, ψn(u|Xi ))

}
+ ℓ(θ, ψn(u|Xi ))

]
Π(du)

Two nuisances must be estimated

:

1) Inverse propensity:1 stable balancing weights, Riesz regression, logistic regression

2) Outcome generative model: conditional generative model, k-nearest neighbors

X = young man

1Zubizarreta (2015), Chernozhukov et al. (2021)
16
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Prior works on causal generative modeling

Covariates (X ) Intervene (A = a⋆) Outcome (Y )

Iterative approaches: GANs (Kocaoglu et al., 2017), normalizing flows (Pawlowski et al.,
2020), VAEs (Karimi et al., 2020), diffusion models (Chao et al., 2023)

Joint generation: autoregressive flows (Khemakhem et al., 2021; Javaloy et al., 2024),
variational graph autoencoders (Sanchez-Martin et al., 2021), diffusion models
(Sanchez et al., 2022)

Direct approaches: inverse propensity weighting (Wu et al., 2024)
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Contributions relative to existing causal generative modeling works

Unlike DoubleGen, existing approaches:

Mostly only apply to specific generative modeling paradigms

Lack convergence guarantees

Are only singly robust

19



Prior works that use AIPW risk estimators

Conditional estimands

Average treatment effect (‘DR-learner’) (van der Laan, 2006; van der Laan, 2013;
Luedtke and van der Laan, 2016; Oprescu et al., 2019; Kennedy, 2023)

Classifier under selection bias (Rotnitzky, Faraggi, et al., 2006)

Survival function (Rubin et al., 2006)

Longitudinal mean (Rotnitzky, Robins, et al., 2017; Luedtke, Sofrygin, et al., 2017)

General estimands

Ensemble learners (van der Laan and Dudoit, 2003)

General learning algorithms (Foster et al., 2023)

Stochastic gradient descent (Yu et al., 2025)
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Main objective of theory

Make it as easy as possible to port over existing results from the generative modeling
literature, with minimal modification

Diffusion Models are Minimax Optimal Distribution Estimators

Kazusato Oko 1 2 Shunta Akiyama 1 Taiji Suzuki 1 2

Abstract
While efficient distribution learning is no doubt
behind the groundbreaking success of diffusion
modeling, its theoretical guarantees are quite lim-
ited. In this paper, we provide the first rigorous
analysis on approximation and generalization abil-
ities of diffusion modeling for well-known func-
tion spaces. The highlight of this paper is that
when the true density function belongs to the
Besov space and the empirical score matching
loss is properly minimized, the generated data
distribution achieves the nearly minimax optimal
estimation rates in the total variation distance and
in the Wasserstein distance of order one. Further-
more, we extend our theory to demonstrate how
diffusion models adapt to low-dimensional data
distributions. We expect these results advance
theoretical understandings of diffusion modeling
and its ability to generate verisimilar outputs.

1. Introduction
Diffusion modeling, also called score-based generative mod-
eling (Sohl-Dickstein et al., 2015; Song & Ermon, 2019;
Song et al., 2020; Ho et al., 2020; Vahdat et al., 2021) has
achieved state-of-the-art performance in image (Song et al.,
2020; Dhariwal & Nichol, 2021), video (Ho et al., 2022),
and audio (Chen et al., 2020; Kong et al., 2020).

Borrowing explanation from the unifying framework of
Song et al. (2020), diffusion modeling first gradually adds
noise to the data distribution, and transforms the distribu-
tion to a predefined noise distribution. This time evolution,
called the forward process, can be formulated as a stochastic
differential equation (SDE) that is data independent. On
the other hand, we can consider the time-reversal of the
SDE, and by following this so-called backward process, one
can generate data from noise. Importantly, the drift term

1Department of Mathematical Informatics, the University of
Tokyo, Tokyo, Japan 2Center for Advanced Intelligence Project,
RIKEN, Tokyo, Japan. Correspondence to: Kazusato Oko <oko-
kazusato@g.ecc.u-tokyo.ac.jp>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

of the backward process is dependent on the data distribu-
tion, specifically on the gradient of the logarithmic density
(score) at each time of the forward process.

In practice, however, we have only access to the true distri-
bution through a finite number of sample. For this reason,
the score of the diffusion process from the empirical dis-
tribution is utilized instead (Vincent, 2011; Sohl-Dickstein
et al., 2015; Song & Ermon, 2019). Moreover, for compu-
tational efficiency, the empirical score is further replaced
by a neural network (score network) that is close to the
empirical score in terms of some loss function using score
matching techniques (Hyvärinen & Dayan, 2005; Vincent,
2011). In this way, diffusion modeling implicitly learns the
true distribution via learning of the empirical score.

Then the following natural question immediately arises:
Is diffusion modeling a good distribution estimator? In
other words, how can the estimation error of the generated
data distribution be explicitly bounded by the number of the
training data and in a data structure dependent way?

On the effect of score approximation errors Existing
literature has analyzed the estimation error with either of the
two assumptions on the accuracy of score approximation.
(i) One popular assumption is that the error of the loss func-
tion in score matching is sufficiently small, which was first
used by Song et al. (2020) to bound the Kullback–Leibler
(KL) divergence for continuous-time dynamics via Girsanov
theorem. Recently, the polynomial bound has appeared in
discrete-time, meaning that the polynomial order of the error
in score estimate at each step and number of steps suffice to
obtain the final estimation error in the total variation (TV)
distance (Lee et al., 2022b). Lee et al. (2022b) assumed
the smoothness and log-Sobolev inequality (LSI) for the
true density, and Chen et al. (2023b) and Lee et al. (2022a)
eliminated the LSI but still with the smoothness. Also, fol-
lowing Song et al. (2020), Pidstrigach (2022) considered the
true distribution on a manifold. (ii) Another assumption is
to bound the difference between the score and the network
at each time and point. De Bortoli et al. (2021) (also with
dissipativily) and De Bortoli (2022) (under the manifold
hypothesis) derived non-polynomial bounds in TV and in
the Wasserstein distance of order one (W1), respectively.

Generalization error analyses However, most of the liter-
ature assumes availability of the true score, and thus whether

1
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ABSTRACT

Flow matching (FM) has gained significant attention as a simulation-free gener-
ative model. Unlike diffusion models, which are based on stochastic differential
equations, FM employs a simpler approach by solving an ordinary differential
equation with an initial condition from a normal distribution, thus streamlining the
sample generation process. This paper discusses the convergence properties of FM
for large sample size under the p-Wasserstein distance. We establish that FM can
achieve an almost minimax optimal convergence rate for 1 → p → 2, presenting
the first theoretical evidence that FM can reach convergence rates comparable to
those of diffusion models. Our analysis extends existing frameworks by examining
a broader class of mean and variance functions for the vector fields and identifies
specific conditions necessary to attain almost optimal rates.

1 INTRODUCTION

Flow matching (FM) (Lipman et al., 2023; Albergo and Vanden-Eijnden, 2023; Liu et al., 2023b) is a
recent simulation-free generative model that produces samples of the target distribution by solving an
ordinary differential equation (ODE) initialized with a source normal distribution. The vector field to
define the ODE is trained by neural networks with the teaching data of random conditional vectors.
This approach bypasses the computationally intensive Monte Carlo sampling required in the diffusion
model, which is currently the standard in generative modeling. Various variations have been proposed
to refine the learning of vector fields, such as OT-CFM (Tong et al., 2024), rectified flow (Liu et al.,
2023b), consistent velocity field (Yang et al., 2024), equivariant flow (Klein et al., 2023), etc. A series
of studies also emerge from the viewpoint of interpolating distributions (Albergo et al., 2023c;a).

FM has already been applied to various domains with promising performance. Among many others,
the rectified flow method has been extended to high-resolution text image generation (Esser et al.,
2024), and there are also many works on the application of FM to molecule generation (Hoogeboom
et al., 2022; Guan et al., 2023; Bose et al., 2023; Dunn and Koes, 2024), text generation (Hu et al.,
2024), speech generation (Le et al., 2023), motion synthesis (Hu et al., 2023), etc.

Although the methods have been developed on the solid theoretical basis of the flows and continuity
equation, their statistical behaviors remain less understood. Recent works have established the con-
vergence of the FM estimator to the true distribution under some distributional metrics (Albergo and
Vanden-Eijnden, 2023; Benton et al., 2023b). Beyond the convergence, more detailed understandings,

1
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Two-step analysis

Goal: Show the true and estimated counterfactual distributions are probably close:

Divergence(P , Pθn ) ≤ Rate(n) w.h.p.

Strategy:

1) Bound divergence by (transformation of) generalization error

GenError(θ) := EP[ℓ(θ,Y
⋆)]−minθ⋆EP[ℓ(θ

⋆,Y ⋆)]

2) Bound generalization error

23



Step 1: divergences already bounded in non-causal literature!

Prior works already showed that

Divergence(P,Pθ) ≲ GenError(θ)b + ϵ

Divergence b ϵ

Flow matching1 2-Wasserstein 1/2 0
Diffusion model2 Total variation 1/2 Trunc. error
Autoreg. language model3 KL divergence 1 0

1Benton et al. (2023), 2Oko et al. (2023), 3Definition of KL divergence

24



Step 1: divergences already bounded in non-causal literature!

Prior works already showed that

Divergence(P,Pθ) ≲ GenError(θ)b + ϵ

Divergence b ϵ

Flow matching1 2-Wasserstein 1/2 0
Diffusion model2 Total variation 1/2 Trunc. error
Autoreg. language model3 KL divergence 1 0

1Benton et al. (2023), 2Oko et al. (2023), 3Definition of KL divergence

24



Step 2: generalization bound

Provide generalization bound for empirical risk minimizer:

θn = argmin
θ∈Θ

AIPWrisk(θ; αn , ψn )︸ ︷︷ ︸

1
n

∑n
i=1

∫ [
1(Ai = a⋆)αn(Xi )

{
ℓ(θ,Yi )− ℓ(θ, ψn(u|Xi ))

}
+ ℓ(θ, ψn(u|Xi ))

]
Π(du)

Will relate it to one for the oracle problem :

θ⋆n = argmin
θ∈Θ

1
n

∑n
i=1 ℓ(θ, Y

⋆
i )

Generalization bound (informal): Under standard statistical learning conditions for

the oracle problem, with probability at least 1− 1/n,

GenError(θn) ≲ infθ∈Θ GenError(θ) + Rate(n, Size(Θ)) + Error(αn) Error(ψn) .

Leading terms match a generalization bound for the oracle problem .

Final term is doubly robust .
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Total variation bound for DoubleGen diffusion models

Diffusion Models are Minimax Optimal Distribution Estimators

Kazusato Oko 1 2 Shunta Akiyama 1 Taiji Suzuki 1 2

Abstract
While efficient distribution learning is no doubt
behind the groundbreaking success of diffusion
modeling, its theoretical guarantees are quite lim-
ited. In this paper, we provide the first rigorous
analysis on approximation and generalization abil-
ities of diffusion modeling for well-known func-
tion spaces. The highlight of this paper is that
when the true density function belongs to the
Besov space and the empirical score matching
loss is properly minimized, the generated data
distribution achieves the nearly minimax optimal
estimation rates in the total variation distance and
in the Wasserstein distance of order one. Further-
more, we extend our theory to demonstrate how
diffusion models adapt to low-dimensional data
distributions. We expect these results advance
theoretical understandings of diffusion modeling
and its ability to generate verisimilar outputs.

1. Introduction
Diffusion modeling, also called score-based generative mod-
eling (Sohl-Dickstein et al., 2015; Song & Ermon, 2019;
Song et al., 2020; Ho et al., 2020; Vahdat et al., 2021) has
achieved state-of-the-art performance in image (Song et al.,
2020; Dhariwal & Nichol, 2021), video (Ho et al., 2022),
and audio (Chen et al., 2020; Kong et al., 2020).

Borrowing explanation from the unifying framework of
Song et al. (2020), diffusion modeling first gradually adds
noise to the data distribution, and transforms the distribu-
tion to a predefined noise distribution. This time evolution,
called the forward process, can be formulated as a stochastic
differential equation (SDE) that is data independent. On
the other hand, we can consider the time-reversal of the
SDE, and by following this so-called backward process, one
can generate data from noise. Importantly, the drift term

1Department of Mathematical Informatics, the University of
Tokyo, Tokyo, Japan 2Center for Advanced Intelligence Project,
RIKEN, Tokyo, Japan. Correspondence to: Kazusato Oko <oko-
kazusato@g.ecc.u-tokyo.ac.jp>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

of the backward process is dependent on the data distribu-
tion, specifically on the gradient of the logarithmic density
(score) at each time of the forward process.

In practice, however, we have only access to the true distri-
bution through a finite number of sample. For this reason,
the score of the diffusion process from the empirical dis-
tribution is utilized instead (Vincent, 2011; Sohl-Dickstein
et al., 2015; Song & Ermon, 2019). Moreover, for compu-
tational efficiency, the empirical score is further replaced
by a neural network (score network) that is close to the
empirical score in terms of some loss function using score
matching techniques (Hyvärinen & Dayan, 2005; Vincent,
2011). In this way, diffusion modeling implicitly learns the
true distribution via learning of the empirical score.

Then the following natural question immediately arises:
Is diffusion modeling a good distribution estimator? In
other words, how can the estimation error of the generated
data distribution be explicitly bounded by the number of the
training data and in a data structure dependent way?

On the effect of score approximation errors Existing
literature has analyzed the estimation error with either of the
two assumptions on the accuracy of score approximation.
(i) One popular assumption is that the error of the loss func-
tion in score matching is sufficiently small, which was first
used by Song et al. (2020) to bound the Kullback–Leibler
(KL) divergence for continuous-time dynamics via Girsanov
theorem. Recently, the polynomial bound has appeared in
discrete-time, meaning that the polynomial order of the error
in score estimate at each step and number of steps suffice to
obtain the final estimation error in the total variation (TV)
distance (Lee et al., 2022b). Lee et al. (2022b) assumed
the smoothness and log-Sobolev inequality (LSI) for the
true density, and Chen et al. (2023b) and Lee et al. (2022a)
eliminated the LSI but still with the smoothness. Also, fol-
lowing Song et al. (2020), Pidstrigach (2022) considered the
true distribution on a manifold. (ii) Another assumption is
to bound the difference between the score and the network
at each time and point. De Bortoli et al. (2021) (also with
dissipativily) and De Bortoli (2022) (under the manifold
hypothesis) derived non-polynomial bounds in TV and in
the Wasserstein distance of order one (W1), respectively.

Generalization error analyses However, most of the liter-
ature assumes availability of the true score, and thus whether

1

Following Oko et al., we give conditions under DoubleGen diffusion models with scores

learned via a neural network class satisfy

TV(P, Pθn ) ≲ log17/2(n) n−
s

2s+d + Error(αn)Error(ψn)

with high probability.
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Background and our objective

Oracle problem: all observations receive the intervention

Factual problem: some observations don’t receive the intervention

Relationship to existing literature

Theoretical guarantees

Experiments

Discussion
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Generating counterfactual smiling faces

Lipstick Makeup Female Earrings No Beard Blonde

Smiling 56% 47% 65% 26% 88% 18%
Not Smiling 38% 30% 52% 12% 79% 12%

Overall 47% 38% 58% 19% 83% 15%

Trained two diffusion models with denoising score matching, using:

1) Smiling instances and a standard loss.

2) All instances and a DoubleGen loss.
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Quantitative assessment: Fréchet and kernel ArcFace distances

FAD ↓ KAD ↓

Näıve 1.00 1.00

Both
right

Plug-in 0.87 0.68
IPW 0.88 0.71
DoubleGen 0.86 0.68

Outcome
wrong

Plug-in 1.90 2.17
DoubleGen 0.86 0.68

Propensity
wrong

IPW 0.93 0.71
DoubleGen 0.85 0.56

Both wrong DoubleGen 1.01 0.79

DoubleGen typically

outperforms the näıve method trained only with smiling instances

outperforms singly robust methods
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Näıve 1.00 1.00

Both
right

Plug-in 0.87 0.68
IPW 0.88 0.71
DoubleGen 0.86 0.68

Outcome
wrong

Plug-in 1.90 2.17
DoubleGen 0.86 0.68

Propensity
wrong

IPW 0.93 0.71
DoubleGen 0.85 0.56

Both wrong DoubleGen 1.01 0.79

DoubleGen typically
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Generating counterfactual Amazon reviews (Hou et al., 2023)

Semi-synthetic experiment, with gold-standard counterfactual samples available from P
Baseline covariates: product category and other metadata

Intervention: synthetic
lower propensity for some product categories: books, movies/TV, automotive

Outcome: Amazon product review

5 stars: I am not sure what type of Keurig I have but this works great in

it! It sits up high enough so it does not get punctured like a regular

k-cup does.

3 stars: I am a big fan of Andrew Lloyd Webber’s musicals. Cats contains

the very well-known song "Memory." Otherwise, there aren’t many memorable

songs in this musical. It also is a revue, which means that there is no

real plot.
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Autoregressive language model setup

We use low-rank adaptation (LoRA)1 to finetune Llama-3.2-1B2

5.5M trainable parameters

1Hu et al. (2022), 2Dubey et al. (2024)
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Näıve approach and DoubleGen often generated similar reviews

5 stars: My son loves to use the game and can play for hours. Thanks for a

fantastic app purchase!

5 stars: My son loves to use the game and can play for hours. Thanks for a

fantastic game purchase.

5 stars: These are a must if you want to look great in a skirt. They are

very durable. Will save me months and months of having to go buy new ones.

5 stars: These are a must if you want to look great in your shorts. They

are very durable. Will save you money and time when it’s time to order

more.
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Näıve approach underused the word ‘book’ (0.24% of reviews)
DoubleGen used it with similar frequency as in test set (4.4%)

5 stars: This is amazing!!!! It’s durable, easy to use, I love it and it

came with all the batteries

5 stars: This book was amazing. The author took the time get to know and

truly connect with both the characters.

3 stars: It’s an OK quality mask. The design and the eye holes are nice.

However, the straps on the back are not adjustable at all so it’s hard to

keep it on your face or to get the bottom part on straight.

3 stars: It’s an OK book. The first and the last chapters are rather

repetitive. The characters are interesting and likable.

33



Background and our objective

Oracle problem: all observations receive the intervention

Factual problem: some observations don’t receive the intervention

Relationship to existing literature

Theoretical guarantees
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Equivalence with missing data problems

Xlab Y

Xunlab

DoubleGen can be used to address outcomes missing at random:
A = a⋆ =⇒ outcome observed
A ̸= a⋆ =⇒ outcome missing

AIPW risk estimator allows missing outcomes to be predicted by any algorithm
E.g., a pretrained foundation model

Special case: MCAR outcomes from prediction-powered inference∗

∗Angelopoulos et al. (2023) 35



Reduced-Entropy Sampling for Language Models

Language models often generate better text by oversampling high-probability tokens∗

Model then no longer targets counterfactual distribution P
Instead targets a lower-entropy variant

DoubleGen can still be used to estimate the transport maps for these schemes

∗Caccia et al. (2018), Fan et al. (2018), Holtzman et al. (2019)
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Extending DoubleGen to joint/conditional counterfactual sampling

Jointly with a subvector V of features X :

Run the algorithm with modified outcome Y ′ = (V ,Y ).

Conditionally on a subvector V of features X :

Requires loss ℓ to depend on the condition v , as in text-to-image diffusion models∗

In both cases, the analysis is nearly identical and yields a similar generalization bound.

∗Saharia et al. (2022), Rombach et al. (2022)
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Thank you!
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Extra Slides
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Identification conditions

1) Positivity: P(A = a⋆ |X ) > 0 a.s.

2) Ignorability: Y ⋆ ⊥ A |X
3) Consistency: Y = Y ⋆ whenever A = A⋆
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Violation of conditions: multiple versions of treatment

If there are multiple versions of treatment, then G-formula instead identifies

counterfactual distribution under a stochastic intervention (VanderWeele et al., 2013)
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