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Objective and examples



Objective: inference on unknown functions

Goal: infer an unknown function v(P) that belongs to a real Hilbert space H.

m Subgoal 1: Estimate v(P) well, in a norm sense.

m Subgoal 2: Construct confidence sets for v(P).

Working in a nonparametric statistical model.



Running example: counterfactual density function

Observe n iid draws of Z = (X,A,Y) ~ P
m X: Covariates
m A: Binary treatment

m Y: Outcome

Aim to estimate density of counterfactual outcome for A = 1:

W(P)(y) = / pyiax(y | 1,x) Px(dx)

Interpretation of v(P) under causal conditions:

What would the density of Y be if, contrary to fact, everyone had received
treatment A =17



Running example: counterfactual density function

215 A =
< ~o~” o~ P Ny
3 . o .- .
a B teanet .
= 5
< N .
210 -5 N\, Se
8 ! hS !
£ - A~
5 . ~a—— S
E K ™
.
8%, o
Ay
\
00 v
0.00 025 0.50 075 1.00

Figure: Three possible counterfactual density functions.

Kennedy et al. (2021) gave estimators of finite-dimensional projections of v(P)

We instead give estimators of the actual function v/(P) as an element of L?())



Other examples

In the paper, we show our framework also covers the following examples:

m Conditional average treatment effect function
(Hill, 2011; Nie et al., 2021)

m Causal dose-response function
(Dfaz et al., 2013; Kennedy, Ma, et al., 2017)

m (Counterfactual) kernel mean embedding
(Gretton et al., 2012; Muandet et al., 2021)



Existing strategies for estimating the function at a point

Counterfactual Density
N
°

Debiased /targeted machine learning has been adapted to estimate v(P)(y).
m e.g., Kennedy et al., 2017; van der Laan et al., 2018; Chernozhukov et al., 2018

Challenges:
m Because P — v(P)(y) is not smooth, local smoothing is needed.

m Rate-optimally tuned estimator is too biased to facilitate inference.



Existing strategies for estimating the function
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Counterfactual Density
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°

Estimation is often performed using tools from statistical learning

m e.g., Foster et al., 2019; van der Laan, 2006; Nie et al., 2021
Challenge: these strategies yield regret guarantees, but not confidence sets
Confidence sets are typically constructed using strategies that are distinct

from those used to estimate the function

m e.g., Robins et al., 2008; Luedtke, Carone, et al., 2019; Hudson et al., 2021



Our approach
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Question: Can turn-the-crank methods be developed to infer about v(P)?

Our finding: Yes!

m And they resemble methods for estimating finite-dimensional quantities.
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Summary of our approach for smooth parameters v

One-step estimation:

n
~ = 1 )
o= U)o+ D 6e(2)
i=1
N——
one-step initial function-valued
estimator estimator bias correction

Wald-type confidence sets:

confidence set = {f s n(QU—1),v—fin < C,,}

quadratic form on H
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Key regularity condition

Our approach applies whenever v is pathwise differentiable.

m Surprising finding: many function-valued parameters satisfy this property!
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Pathwise differentiability (van der Vaart, 1991; Bickel et al., 1993)

v is pathwise differentiable if there is a bounded linear operator vp : L2(P) —H
so that, for all smooth submodels {P. : ¢ € R} with Py = P and score s,

V(Pﬁ)_y(P) €_—>0> DP(S)

N—_——
“local
parameter”

€

Our paper gives easy-to-check conditions for verifying pathwise differentiability.
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Existence of efficient influence functions

An efficient influence function (EIF) of v is an H-valued map ¢p that satisfies

vp(s) = /¢p(z)s(z)P(dz) for all s € L*(P)
An EIF may not exist.

But, if it does, then, we have the von Mises approximation
v(P) ~ v(P)+ Erlop(2)],

which suggests the one-step estimator

n

y = y(ﬁ)+%2¢,§(z,).
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Two cases we'll consider

Does an EIF exist?

Yes No
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Two cases we'll consider

Does an EIF exist?

Yes " No

We’ll focus on
this case first.
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When does an EIF exist?

In general:
‘H is a reproducing kernel Hilbert space
=

an EIF exists

In our counterfactual density example:

v(P) is known to be bandlimited

=

an EIF exists

17



Bandlimited densities (lbragimov et al., 1983)
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Assuming v(P) is bandlimited is a strong condition!

m E.g., imposes that v(P) must be infinitely differentiable.

This condition will be relaxed in the second half of the talk.
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[llustration of one-step estimator

Use any statistical learning approach to construct
a plug-in estimator of the true counterfactual density:

°
o
L

truth

plug-in

0.05 1

Counterfactual Density

L
[S)

|
o
o-
o
o

Recall: v(P)(y) = /pym.x(y | 1, x) Px(dx)
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[llustration of one-step estimator

Evaluate the efficient influence function (EIF) of v at each of the observations.

®

Highlighting

3 of the n total
" EIF evaluations
for illustration
purposes.

The other EIF
evaluations
appear in

EIF Evaluated at Individual Observations
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[llustration of one-step estimator

@ Approximate the estimation error ( = truth — plugin ) from plot @
with a quantity computed using the data alone.

Difference in Counterfactual Densities

0.01

-0.01 4

-0.02 4

Approximate
estimation error

True estimation error

= truth - plugin n
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[llustration of one-step estimator

©)
©)

True estimation error
=truth-plugin

plug-in

Counterfactual Density
Difference in Counterfactual Densities

@ Improve the plug-in estimator from plot @ by adding the approximate
estimation error from plot (3), yielding the one-step estimator.

one-step

0.101

truth

0.054 \ /

Counterfactual Density

0.00

T
-10 -5 0 5 10
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Weak convergence

Under conditions, there’s a Gaussian random element H such that

n*/2[o — v(P)] ~ H.
Key condition is that P estimates P well enough.

In our counterfactual density example, this holds if

—1/2)

HﬁA\X - PA\XHLz(p) : Hﬁvm 1,X — Py|a=1,X[|12(P) = Op("

propensity estimation error outcome density estimation error
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Weak convergence facilitates the construction of confidence sets

The continuous mapping theorem yields that

nl[7 = v(P)[5 ~ |HI3.

This suggests determining a threshold (, via the bootstrap and letting

confidence set = {f cnlo—fl3 < C,,}.

Other quadratic forms can also be used to construct the confidence set.
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Simulation to evaluate our approach when an EIF exists

Estimating a bandlimited counterfactual density function

n iid draws of Z = (X, A, Y) ~ P observed
m Covariate X is 5d
m Treatment A depends on X

0.054 / \ / \

Counterfactual Density
~
/
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Coverage of L2-ball confidence sets

Diameters decay at n

—1/2

rate

1.00

0.754

0.504

Actual Coverage Probability

0.254

0.00
0.00

Sample Size — 250 — 500 — 1000 — 2000 — 4000

T
0.25

0.50
Nominal Coverage Probability

T
0.75

1.00
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Summary of case where v has an EIF

Does an EIF exist?

Yes " No

Estimation and inference parallel the 1d case.

Examples of parameters with EIFs:
m Bandlimited counterfactual density function

m (Counterfactual) kernel mean embedding
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Moving to case where v does not have an EIF

Does an EIF exist?

Examples of parameters without EIFs:

m Non-bandlimited counterfactual density function
m Conditional average treatment effect function

m Causal dose-response function
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The challenge

If there’s no EIF, how can we infer about v(P)?

What we did when there was an EIF simply won’t work:

v =  v(P) + . 2(Zi)
i=1
——
one-step initial how to compute a

estimator estimator bias correction?
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Our proposal: reduce the problem to one that has an EIF

H r H
T Image(I’)
v(R) v(P,) \\r o v(P,)
'\\\Qv(m
vie) T “Tov(P)

Key observation: There is an injective transformation I' : H — H so that

[ ov has an EIF.

29



Our proposal: reduce the problem to one that has an EIF

H H
Image(I’)
V(P1). :/(Pz) [ ov(P,)
C Tov(P,)
vp) ° T ov(P)

Our proposal:

Temporarily make ' o v(P), rather than v(P), the target of inference.
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Our proposal: reduce the problem to one that has an EIF

H H
Image(I’)
V(P1). :/(Pz) [ov(P,)
[ev(P,)
vy I'ov(P)

Our proposal:
Temporarily make ' o v(P), rather than v(P), the target of inference.

Construct confidence set C, for I o v(P).

29



Our proposal: reduce the problem to one that has an EIF

H -1 H
T Image(T)
:/(PZ) i ['ov(Pp)
[ov(P,)
['ov(P)

Our proposal:
Temporarily make ' o v(P), rather than v(P), the target of inference.
Construct confidence set C, for I o v(P).

Use I}(C,) as a confidence set for v(P).

29



Choice of '
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In the paper, we study the confidence sets derived using

F) =" Bilf, he)ahi,

k=1

where
(hk)R2y is an orthonormal basis for H;

(Br)21 positive and square summable.

The left inverse of T is
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[llustration of confidence set

To visualize our confidence sets, we embed each f € H into 2 as

((F ), (F ho), (F, hs), (Fyha), (F, hs), (Ff he)y, (Ff, he),{f, hs), (f ho),(f hwo), ...)
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[llustration of confidence set

To visualize our confidence sets, we embed each f € H into 2 as

(UF ) (Fohe). (F ha), (Foha),  (Fohs) (Fhe). (F heY, (F be),  (FL ko), (F oo, ...)
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Generalized Fourier Coefficient 2k, (y, ha)

Generalized Fourier Coefficient (2k—1), {y, ha1)
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[llustration of confidence set

Generalized Fourier Coefficient 2k, (y, ha)

To visualize our confidence sets, we embed each f € H into 2 as
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[llustration of confidence set

To visualize our confidence sets, we embed each f € H into 2 as

((F b)Y (Foho), (F ha), (F haY, (. hs) (Fohs), (F, he), (F, hg), (F. ho). (F. i), ...)

k=1 k=2 k=3 k=4 k=5
B =
S
~ 2
£ g
< =
~ 3
X
g 3
8 5
2 Stretch trelch A
= =)
8 horizontally vcmcally ~
o by 1/lf2k 13— by 1/Bzi
5 1 _l
s o
2 - @
E
3 ./ -
N
© <
5] I
5 - A
(0] 2

Generalized Fourier Coefficient (2k—1), {y, ha1)

31



Simulation to evaluate our approach when an EIF does not exist

Test if counterfactual density functions under A =1 and A = 0 are equal

Implement by checking whether 0 is in a confidence set for

v(P)() :/PY\A,X(' | 1,x) Px(dX)*/pr,x(- | 0, ) Px(dx)

density of Y(1) density of Y(0)
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Simulation to evaluate our approach when an EIF does not exist

Test if counterfactual density functions under A =1 and A = 0 are equal

Implement by checking whether 0 is in a confidence set for

v(P)() :/Pv\Afx(- | 1,x) Px(dX)—/pv|A,x(~ | 0, ) Px(dx)

density of Y(1) density of Y/(0)
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Type 1 error and power at differe

sample sizes

npeausal

Our Approach, Spherical Confidence Set

Our Approach, Elliptical Confidence Set
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Future work
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Do similar approaches enable uncertainty quantification for other estimators?
m e.g., orthogonal statistical learning (Foster et al., 2019)

Can we let the Hilbert space depend on P?
meg, H=LP)
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Thank you!



Questions?
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Extra Slides



Establishing weak convergence

Adding and subtracting terms shows that

PP uP) = 03 6e(Z) + 0 [10p(2) - o (2Nd(P, - P)(2)

i=1

negligible if o5 — ¢p

scaled sample mean E g
in an appropriate sense

of mean-zero function

+

negligible under typical

—1/4

n -rate conditions on P
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Establishing weak convergence

Adding and subtracting terms shows that

PP - Pl = 0 Y 0e(Z) + 0 [[0p(2) — on(2Nd(P - P))

i=1

negligible if o5 — ¢p

scaled sample mean E ;
in an appropriate sense

of mean-zero function

+

negligible under typical

—1/4

n -rate conditions on P

Key point: If terms 2 and 3 are 0,(1), then, by the CLT:
n*2[0 — v(P)] ~ H,

where H is a Gaussian random element.
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Weak convergence facilitates the construction of confidence sets

For any continuous linear operator €,

n(Q[v—v(P),v—v(P)), ~ (QH),H)%.

This suggests determining a threshold (, via the bootstrap and letting

confidence set = {h :n(Q(U—h),v—hyy < (:,,}.

Candidate choices of Q:
m ldentity operator

m (Regularized) inverse covariance operator of H
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EIF and form of estimator in counterfactual density example

The density of counterfactual outcome for A =1 is given by:

vwm0=/m%AHLHPAW)

We estimate its b-bandlimiting,
U= [ KOUPG) 6,
where K, (¥) := {sin[b(y — y)]}/[m(¥ — y)]-

The EIF takes the form

1{a=1}
gr(al x)
FE Ky [A=1,X = x] - (P).

ép(yzavx): {Ky—EP[Ky|A:a7X:x]}
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Regularized one-step estimation

Though some pathwise differentiable parameters do not have EIFs, all of them
have what we call regularized EIFs.

~ 5 1
7= uP) 4 Y 0,62
i=1
——
regularized initial empirical mean of
one-step estimator regularized EIF
estimator

The level of regularization can be tuned via cross-validation.
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Simulation to evaluate our approach when an EIF does not exist

Estimating a non-bandlimited counterfactual density function

n iid draws of Z = (X, A, Y) ~ P observed
m Covariate X is 5d
m Treatment A depends on X
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Mean integrated squared error vs. sample size in non-bandlimited settings
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