One-Step Estimation of Differentiable Hilbert-Valued Parameters

Alex Luedtke

Joint work with Incheoul Chung

Department of Statistics University of Washington

Acknowledgements

This research was supported by the:

- NIH through award numbers DP2-LM013340;
- NSF through award number DMS-2210216.

The work that I speak about today is based on the following preprint:

Luedtke, A., & Chung, I. (2023). One-Step Estimation of Differentiable Hilbert-Valued Parameters. arXiv preprint arXiv:2303.16711.

- 1 Objective and examples
- 2 Our approach
- 3 Future work

Objective: inference on unknown functions

Goal: infer an unknown function $\nu(P)$ that belongs to a real Hilbert space \mathcal{H} .

- Subgoal 1: **Estimate** $\nu(P)$ well, in a norm sense.
- Subgoal 2: Construct **confidence sets** for $\nu(P)$.

Working in a nonparametric statistical model.

Running example: counterfactual density function

Observe *n* iid draws of $Z = (X, A, Y) \sim P$

- X: Covariates
- A: Binary treatment
- Y: Outcome

Aim to estimate density of counterfactual outcome for A=1:

$$\nu(P)(y) = \int \rho_{Y|A,X}(y \mid 1,x) P_X(dx)$$

Interpretation of $\nu(P)$ under causal conditions:

What would the density of Y be if, contrary to fact, everyone had received treatment A=1?

Running example: counterfactual density function

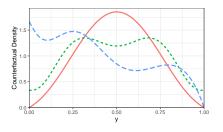


Figure: Three possible counterfactual density functions.

Kennedy et al. (2021) gave estimators of finite-dimensional projections of $\nu(P)$

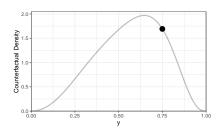
We instead give estimators of the actual function $\nu(P)$ as an element of $L^2(\lambda)$

Other examples

In the paper, we show our framework also covers the following examples:

- Conditional average treatment effect function (Hill, 2011; Nie et al., 2021)
- Causal dose-response function
 (Díaz et al., 2013; Kennedy, Ma, et al., 2017)
- (Counterfactual) kernel mean embedding (Gretton et al., 2012; Muandet et al., 2021)

Existing strategies for estimating the function at a point



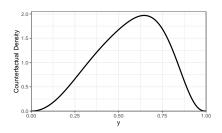
Debiased/targeted machine learning has been adapted to estimate $\nu(P)(y)$.

■ e.g., Kennedy et al., 2017; van der Laan et al., 2018; Chernozhukov et al., 2018

Challenges:

- Because $P \mapsto \nu(P)(y)$ is not smooth, **local smoothing** is needed.
- Rate-optimally tuned estimator is **too biased** to facilitate inference.

Existing strategies for estimating the function



Estimation is often performed using tools from statistical learning

■ e.g., Foster et al., 2019; van der Laan, 2006; Nie et al., 2021

Challenge: these strategies yield regret guarantees, but not confidence sets

Confidence sets are typically constructed using strategies that are distinct from those used to estimate the function

■ e.g., Robins et al., 2008; Luedtke, Carone, et al., 2019; Hudson et al., 2021

- 1 Objective and examples
- 2 Our approach
- 3 Future work

Our question

Question: Can turn-the-crank methods be developed to infer about $\nu(P)$?

Our finding: Yes!

 \blacksquare And they resemble methods for estimating finite-dimensional quantities.

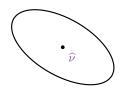
Summary of our approach for smooth parameters ν

One-step estimation:

$$\widehat{\nu} = \nu(\widehat{P}) + \underbrace{\frac{1}{n} \sum_{i=1}^{n} \phi_{\widehat{P}}(Z_i)}_{\text{one-step estimator}} + \underbrace{\frac{1}{n} \sum_{i=1}^{n} \phi_{\widehat{P}}(Z_i)}_{\text{function-valued bias correction}}$$

Wald-type confidence sets:

confidence set
$$= \left\{ f : \underbrace{n \langle \Omega(\widehat{\nu} - f), \widehat{\nu} - f \rangle_{\mathcal{H}}}_{\text{quadratic form on } \mathcal{H}} \le \zeta_n \right\}$$



Our approach applies whenever ν is **pathwise differentiable**.

■ Surprising finding: many function-valued parameters satisfy this property!

Pathwise differentiability (van der Vaart, 1991; Bickel et al., 1993)

 ν is **pathwise differentiable** if there is a bounded linear operator $\dot{\nu}_P: L^2(P) \to \mathcal{H}$ so that, for all smooth submodels $\{P_\epsilon : \epsilon \in \mathbb{R}\}$ with $P_0 = P$ and score s,

$$\frac{\nu(P_{\epsilon}) - \nu(P)}{\epsilon} \xrightarrow{\epsilon \to 0} \underbrace{\dot{\nu}_{P}(s)}_{\text{"local parameter"}}$$

Our paper gives easy-to-check conditions for verifying pathwise differentiability.

Existence of efficient influence functions

An efficient influence function (EIF) of ν is an \mathcal{H} -valued map ϕ_P that satisfies

$$\dot{
u}_P(s) = \int \phi_P(z) s(z) P(dz) \text{ for all } s \in L^2(P)$$

An EIF may not exist.

But, if it does, then, we have the von Mises approximation

$$\nu(P) \approx \nu(\widehat{P}) + E_P[\phi_{\widehat{P}}(Z)],$$

which suggests the one-step estimator

$$\widehat{\nu} = \nu(\widehat{P}) + \frac{1}{n} \sum_{i=1}^{n} \phi_{\widehat{P}}(Z_i).$$

Two cases we'll consider

Two cases we'll consider

We'll focus on this case first.

When does an EIF exist?

In general:

 ${\cal H}$ is a reproducing kernel Hilbert space

an EIF exists

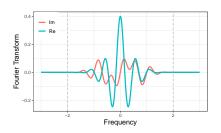
In our counterfactual density example:

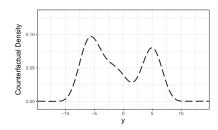
 $\nu(P)$ is known to be bandlimited

 \Longrightarrow

an EIF exists

Bandlimited densities (Ibragimov et al., 1983)



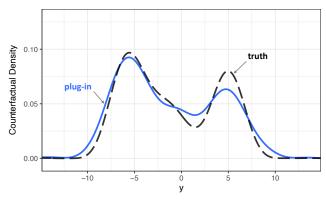


Assuming $\nu(P)$ is bandlimited is a strong condition!

■ E.g., imposes that $\nu(P)$ must be infinitely differentiable.

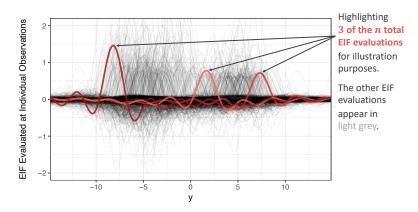
This condition will be relaxed in the second half of the talk.

Use any statistical learning approach to construct a plug-in estimator of the true counterfactual density:

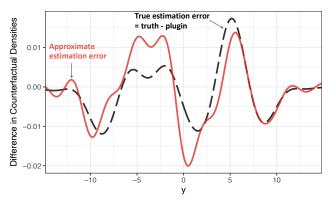


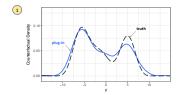
Recall:
$$\nu(P)(y) = \int p_{Y|A,X}(y \mid 1,x) P_X(dx)$$

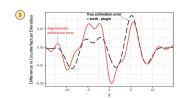
2 Evaluate the efficient influence function (EIF) of ν at each of the observations.



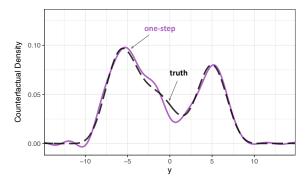
Approximate the **estimation error** (= **truth – plugin**) from plot ① with a **quantity computed using the data alone**.







4 Improve the plug-in estimator from plot ① by adding the approximate estimation error from plot ③, yielding the one-step estimator.



Weak convergence

Under conditions, there's a Gaussian random element ${\mathbb H}$ such that

$$n^{1/2}[\widehat{\nu}-\nu(P)] \leadsto \mathbb{H}.$$

Key condition is that \widehat{P} estimates P well enough.

In our counterfactual density example, this holds if

$$\|\widehat{p}_{A|X} - p_{A|X}\|_{L^2(P)} \cdot \|\widehat{p}_{Y|A=1,X} - p_{Y|A=1,X}\|_{L^2(P)} = o_p(n^{-1/2}).$$
propensity estimation error
$$\underbrace{\quad \text{outcome density estimation error}}_{}$$

Weak convergence facilitates the construction of confidence sets

The continuous mapping theorem yields that

$$n\|\widehat{\nu} - \nu(P)\|_{\mathcal{H}}^2 \rightsquigarrow \|\mathbb{H}\|_{\mathcal{H}}^2.$$

This suggests determining a threshold ζ_n via the **bootstrap** and letting

$$\text{confidence set } = \ \Big\{ f \ : \ n \|\widehat{\nu} - f\|_{\mathcal{H}}^2 \ \le \ \zeta_n \Big\}.$$

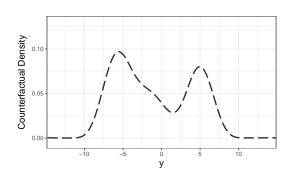
Other quadratic forms can also be used to construct the confidence set.

Simulation to evaluate our approach when an EIF exists

Estimating a bandlimited counterfactual density function

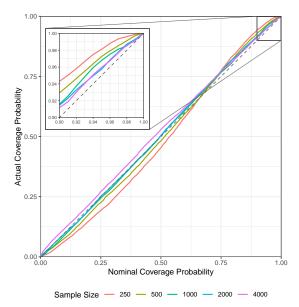
n iid draws of $Z = (X, A, Y) \sim P$ observed

- Covariate X is 5d
- Treatment A depends on X

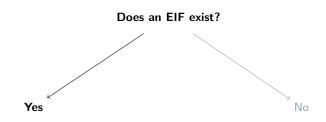


Coverage of L^2 -ball confidence sets

Diameters decay at $n^{-1/2}$ rate



Summary of case where ν has an EIF



Estimation and inference parallel the 1d case.

Examples of parameters with EIFs:

- Bandlimited counterfactual density function
- (Counterfactual) kernel mean embedding

Moving to case where ν does not have an EIF



Examples of parameters without EIFs:

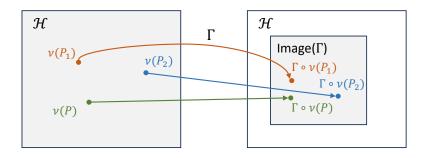
- Non-bandlimited counterfactual density function
- Conditional average treatment effect function
- Causal dose-response function

The challenge

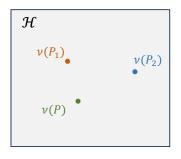
If there's no EIF, how can we infer about $\nu(P)$?

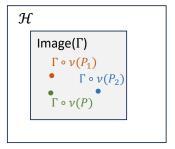
What we did when there was an EIF simply won't work:

$$\widehat{\nu}$$
 = $\nu(\widehat{P})$ + $\frac{1}{n}\sum_{i=1}^{n} \widehat{\nu_{\widehat{P}}(Z_i)}$ how to compute a estimator estimator bias correction?



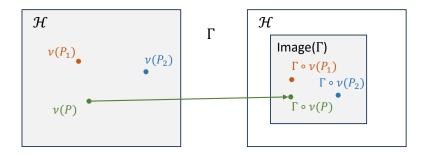
Key observation: There is an injective transformation $\Gamma:\mathcal{H}\to\mathcal{H}$ so that $\Gamma\circ\nu \text{ has an EIF}.$





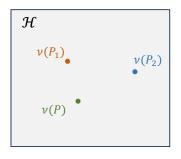
Our proposal:

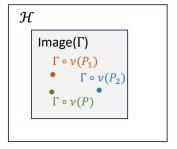
I Temporarily make $\Gamma \circ \nu(P)$, rather than $\nu(P)$, the target of inference.



Our proposal:

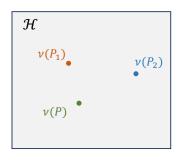
I Temporarily make $\Gamma \circ \nu(P)$, rather than $\nu(P)$, the target of inference.

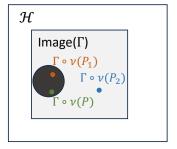




Our proposal:

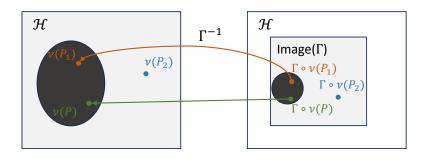
I Temporarily make $\Gamma \circ \nu(P)$, rather than $\nu(P)$, the target of inference.





Our proposal:

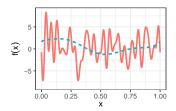
- **I** Temporarily make $\Gamma \circ \nu(P)$, rather than $\nu(P)$, the target of inference.
- **2** Construct confidence set C_n for $\Gamma \circ \nu(P)$.

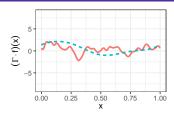


Our proposal:

- **I** Temporarily make $\Gamma \circ \nu(P)$, rather than $\nu(P)$, the target of inference.
- **2** Construct confidence set C_n for $\Gamma \circ \nu(P)$.
- If Use $\Gamma^{-1}(\mathcal{C}_n)$ as a confidence set for $\nu(P)$.

Choice of Γ





In the paper, we study the confidence sets derived using

$$\Gamma(f) = \sum_{k=1}^{\infty} \beta_k \langle f, h_k \rangle_{\mathcal{H}} h_k,$$

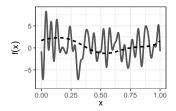
where

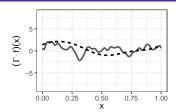
- $(h_k)_{k=1}^{\infty}$ is an orthonormal basis for \mathcal{H} ;
- $(\beta_k)_{k=1}^{\infty}$ positive and square summable.

The left inverse of Γ is

$$\Gamma^{-1}(f) = \sum_{k=1}^{\infty} \frac{1}{\beta_k} \langle f, h_k \rangle_{\mathcal{H}} h_k.$$

Choice of Γ





In the paper, we study the confidence sets derived using

$$\Gamma(f) = \sum_{k=1}^{\infty} \beta_k \langle f, \mathbf{h}_k \rangle_{\mathcal{H}} \mathbf{h}_k,$$

where

- $(h_k)_{k=1}^{\infty}$ is an orthonormal basis for \mathcal{H} ;
- \bullet $(\beta_k)_{k=1}^{\infty}$ positive and square summable.

The left inverse of Γ is

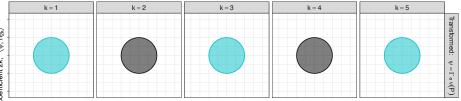
$$\Gamma^{-1}(f) = \sum_{k=1}^{\infty} \frac{1}{\beta_k} \langle f, h_k \rangle_{\mathcal{H}} h_k.$$

To visualize our confidence sets, we embed each $f \in \mathcal{H}$ into ℓ^2 as

$$(\langle f, h_1 \rangle, \langle f, h_2 \rangle, \quad \langle f, h_3 \rangle, \langle f, h_4 \rangle, \quad \langle f, h_5 \rangle, \langle f, h_6 \rangle, \quad \langle f, h_7 \rangle, \langle f, h_8 \rangle, \quad \langle f, h_9 \rangle, \langle f, h_{10} \rangle, \ldots)$$

To visualize our confidence sets, we embed each $f \in \mathcal{H}$ into ℓ^2 as

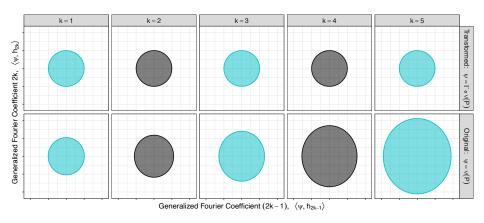
$$(\langle f, h_1 \rangle, \langle f, h_2 \rangle, \quad \langle f, h_3 \rangle, \langle f, h_4 \rangle, \quad \langle f, h_5 \rangle, \langle f, h_6 \rangle, \quad \langle f, h_7 \rangle, \langle f, h_8 \rangle, \quad \langle f, h_9 \rangle, \langle f, h_{10} \rangle, \dots)$$



Generalized Fourier Coefficient 2k, $\langle \psi, h_{2k} \rangle$

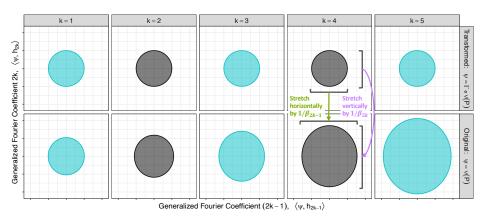
To visualize our confidence sets, we embed each $f \in \mathcal{H}$ into ℓ^2 as

$$(\langle f, h_1 \rangle, \langle f, h_2 \rangle, \quad \langle f, h_3 \rangle, \langle f, h_4 \rangle, \quad \langle f, h_5 \rangle, \langle f, h_6 \rangle, \quad \langle f, h_7 \rangle, \langle f, h_8 \rangle, \quad \langle f, h_9 \rangle, \langle f, h_{10} \rangle, \dots)$$



To visualize our confidence sets, we embed each $f \in \mathcal{H}$ into ℓ^2 as

$$(\langle f, h_1 \rangle, \langle f, h_2 \rangle, \quad \langle f, h_3 \rangle, \langle f, h_4 \rangle, \quad \langle f, h_5 \rangle, \langle f, h_6 \rangle, \quad \langle f, h_7 \rangle, \langle f, h_8 \rangle, \quad \langle f, h_9 \rangle, \langle f, h_{10} \rangle, \dots)$$



Simulation to evaluate our approach when an EIF does not exist

Test if **counterfactual density functions** under A = 1 and A = 0 are equal

Implement by checking whether 0 is in a confidence set for

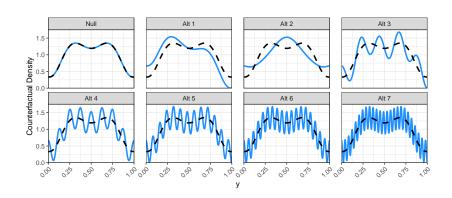
$$\nu(P)(\cdot) = \underbrace{\int p_{Y|A,X}(\cdot \mid 1, x) P_X(dx)}_{\text{density of } Y(1)} - \underbrace{\int p_{Y|A,X}(\cdot \mid 0, x) P_X(dx)}_{\text{density of } Y(0)}$$

Simulation to evaluate our approach when an EIF does not exist

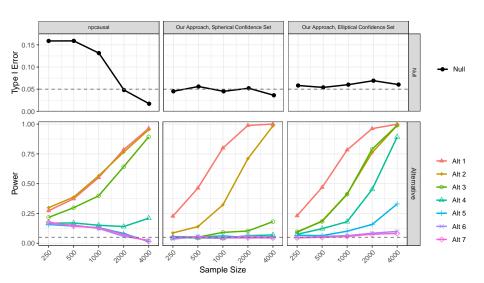
Test if **counterfactual density functions** under A = 1 and A = 0 are equal

Implement by checking whether 0 is in a confidence set for

$$\nu(P)(\cdot) = \underbrace{\int p_{Y|A,X}(\cdot \mid 1, x) P_X(dx)}_{\text{density of } Y(1)} - \underbrace{\int p_{Y|A,X}(\cdot \mid 0, x) P_X(dx)}_{\text{density of } Y(0)}$$



Type 1 error and power at different sample sizes



- 1 Objective and examples
- 2 Our approach
- 3 Future work

Future work

Do similar approaches enable uncertainty quantification for other estimators?

e.g., orthogonal statistical learning (Foster et al., 2019)

Can we let the Hilbert space depend on P?

$$lacksquare$$
 e.g., $\mathcal{H}=L^2(P)$

Thank you!

Questions?

References I

- Bickel, P. J. et al. (1993). Efficient and adaptive estimation for semiparametric models. Vol. 4. Johns Hopkins University Press Baltimore. Chernozhukov, V., W. Newey, and R. Singh (2018). "De-biased machine learning of global and local parameters using regularized Riesz representers". In: arXiv preprint arXiv:1802.08667.
- Díaz, I. and M. J. van der Laan (2013). "Targeted data adaptive estimation of the causal dose–response curve". In: Journal of Causal Inference 1.2, pp. 171–192.
- Foster, D. J. and V. Syrgkanis (2019). "Orthogonal statistical learning". In: arXiv preprint arXiv:1901.09036.
- Gretton, A. et al. (2012). "A kernel two-sample test". In: The Journal of Machine Learning Research 13.1, pp. 723–773.
- Hill, J. L. (2011). "Bayesian nonparametric modeling for causal inference". In: Journal of Computational and Graphical Statistics 20.1, pp. 217–240.
- Hudson, A., M. Carone, and A. Shojaie (2021). "Inference on function-valued parameters using a restricted score test". In: arXiv preprint arXiv:2105.06646.
- Ibragimov, I. and R. Khas'minskii (1983). "Estimation of distribution density belonging to a class of entire functions". In: Theory of Probability & Its Applications 27.3, pp. 551–562.
- Kennedy, E. H., S. Balakrishnan, and L. Wasserman (2021). "Semiparametric counterfactual density estimation". In: arXiv preprint arXiv:2102.12034.
- Kennedy, E. H., Z. Ma, et al. (2017). "Non-parametric methods for doubly robust estimation of continuous treatment effects". In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79.4, pp. 1229–1245.
- Luedtke, A., M. Carone, and M. J. van der Laan (2019). "An omnibus non-parametric test of equality in distribution for unknown functions". In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 81.1, pp. 75–99.
- Luedtke, A. and I. Chung (2023). "One-Step Estimation of Differentiable Hilbert-Valued Parameters". In: arXiv preprint arXiv:2303.16711. Muandet, K. et al. (2021). "Counterfactual Mean Embeddings.". In: J. Mach. Learn. Res. 22, pp. 162–1.
- Nie, X. and S. Wager (2021). "Quasi-oracle estimation of heterogeneous treatment effects". In: Biometrika 108.2, pp. 299-319.
- Robins, J. et al. (2008). "Higher order influence functions and minimax estimation of nonlinear functionals". In: *Probability and statistics:* essays in honor of David A. Freedman 2, pp. 335–421.
- van der Laan, M. J. (2006). "Statistical inference for variable importance". In: The International Journal of Biostatistics 2.1.
- van der Laan, M. J., A. Bibaut, and A. R. Luedtke (2018). "CV-TMLE for nonpathwise differentiable target parameters". In: Targeted Learning in Data Science. Springer, pp. 455–481.
- van der Vaart, A. (1991). "On differentiable functionals". In: The Annals of Statistics, pp. 178-204.

Extra Slides

Establishing weak convergence

Adding and subtracting terms shows that

$$n^{1/2}[\widehat{\nu} - \nu(P)] = \underbrace{n^{-1/2} \sum_{i=1}^{n} \phi_{P}(Z_{i})}_{\text{scaled sample mean of mean-zero function}} + \underbrace{n^{1/2} \int [\phi_{\widehat{P}}(z) - \phi_{P}(z)] d(P_{n} - P)(z)}_{\text{negligible if } \phi_{\widehat{P}} \to \phi_{P} \text{ in an appropriate sense}}$$
$$+ \underbrace{n^{1/2} \left(\nu(\widehat{P}) - \nu(P) + E_{P}[\phi_{\widehat{P}}(Z)]\right)}_{\text{negligible under typical } n^{-1/4}\text{-rate conditions on } \widehat{P}}$$

Adding and subtracting terms shows that

$$n^{1/2}[\widehat{\nu} - \nu(P)] = \underbrace{n^{-1/2} \sum_{i=1}^{n} \phi_P(Z_i)}_{\text{scaled sample mean of mean-zero function}} + \underbrace{n^{1/2} \int [\phi_{\widehat{P}}(z) - \phi_P(z)] d(P_n - P)(z)}_{\text{negligible if } \phi_{\widehat{P}} \to \phi_P \text{ in an appropriate sense}}$$
$$+ \underbrace{n^{1/2} \left(\nu(\widehat{P}) - \nu(P) + E_P[\phi_{\widehat{P}}(Z)]\right)}_{\text{negligible under typical } n^{-1/4}\text{-rate conditions on } \widehat{P}}$$

Key point: If terms 2 and 3 are $o_p(1)$, then, by the CLT:

$$n^{1/2}[\widehat{\nu}-\nu(P)] \leadsto \mathbb{H},$$

where \mathbb{H} is a Gaussian random element.

Weak convergence facilitates the construction of confidence sets

For any continuous linear operator Ω ,

$$n \langle \Omega [\widehat{\nu} - \nu(P)], \widehat{\nu} - \nu(P) \rangle_{\mathcal{H}} \rightsquigarrow \langle \Omega(\mathbb{H}), \mathbb{H} \rangle_{\mathcal{H}}.$$

This suggests determining a threshold ζ_n via the **bootstrap** and letting

$$\text{confidence set } \ = \ \Big\{ h \ : \ n \, \langle \Omega(\widehat{\nu} - h), \widehat{\nu} - h \rangle_{\mathcal{H}} \ \le \ \zeta_n \Big\}.$$

Candidate choices of Ω :

- Identity operator
- \blacksquare (Regularized) inverse covariance operator of $\mathbb H$

EIF and form of estimator in counterfactual density example

The density of counterfactual outcome for A=1 is given by:

$$\nu(P)(y) = \int p_{Y|A,X}(y \mid 1,x) P_X(dx)$$

We estimate its *b*-bandlimiting,

$$\underline{\nu}(P)(y) := \int_{-\infty}^{\infty} K_{y}(\tilde{y}) \, \nu(P)(\tilde{y}) \, d\tilde{y},$$

where $K_y(\tilde{y}) := \{\sin[b(\tilde{y}-y)]\}/[\pi(\tilde{y}-y)].$

The EIF takes the form

$$\underline{\phi}_{P}(y, a, x) = \frac{1\{a = 1\}}{g_{P}(a \mid x)} \{K_{y} - E_{P}[K_{Y} \mid A = a, X = x]\} + E_{P}[K_{Y} \mid A = 1, X = x] - \underline{\nu}(P).$$

Regularized one-step estimation

Though some pathwise differentiable parameters do not have EIFs, all of them have what we call **regularized EIFs**.

$$\widehat{\nu} = \nu(\widehat{P}) + \frac{1}{n} \sum_{i=1}^{n} \phi_{\text{reg},\widehat{P}}(Z_i)$$
regularized initial empirical mean of regularized EIF estimator

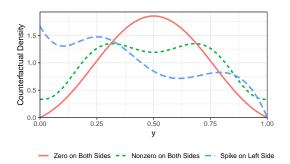
The level of regularization can be tuned via cross-validation.

Simulation to evaluate our approach when an EIF does not exist

Estimating a non-bandlimited counterfactual density function

n iid draws of $Z = (X, A, Y) \sim P$ observed

- Covariate X is 5d
- Treatment A depends on X



Mean integrated squared error vs. sample size in non-bandlimited settings

