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Data structure: right-censored survival time with high-dimensional feature

T : time-to-event outcome

U = (U1, . . . ,Up): p-dimensional vector of features

T may by censored by an independent variable C , in which case we observe

X = min{T ,C} and ∆ = I{T ≤ C}
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Objective

Our objectives are to develop a confidence interval for

maxkΨk(P) = maxk
CovP(Uk ,T )

VarP(Uk)

and a hypothesis test for

H0 : maxk Ψk(P) = 0 vs. H1 : not H0.

Examples

Virology:
potency of a monoclonal antibody is assessed in terms of a survival outcome
it is important to identify associations with patterns of viral gene expression

Cancer genomics:
identifying relationships between patients’ gene expression and their survival
times
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An easier problem: inferring the association between T and one feature

To develop some tools that we’ll need later, we first study a simpler setting.

For now, for a fixed feature k, our goal is infer about

Ψk(P) =
CovP(Uk ,T )

VarP(Uk)
.

In what follows we develop an efficient one-step estimator for this quantity.
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Nuisance function estimation in the easier problem

To construct an efficient one-step estimator, we require estimators of:

(i) marginal distribution of U
We estimate with the empirical distribution.

(ii) censoring distribution, namely G(t) = P(C ≥ t)
We estimate with the Kaplan-Meier estimator.

(iii) conditional mean residual life function
(u, s, k) 7→ E [T − s|Uk = u,T ≥ s]

We allow for the use of an arbitrary consistent estimator of this quantity.

We let P̂n be any distribution whose nuisances (i), (ii), and (iii) correspond to
the estimates described above.
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One-step estimation in the easier problem

The efficient one-step estimator for Ψk(P) takes the form

ψ̂k = Ψk(P̂n) +
1

n

n∑
i=1

IFk(Uk,i ,Xi ,∆i | P̂n),

where IFk( · | P̂n) denotes the efficient influence function of Ψ at P̂n relative
to a nonparametric model.

We derive the form of IFk in our paper.

Under regularity conditions,

n1/2
[
ψ̂k −Ψk(P)

]
⇝ N(0, σ2

k),

which facilitates the construction of Wald-type confidence intervals.
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Back to the harder problem: inferring the maximal association between T
and one of p features

We now return to the problem of constructing a confidence interval for

maxkΨk(P) = maxk
CovP(Uk ,T )

VarP(Uk)
.

To do this, we must incorporate the selection of the maximally associated
predictor into our inferential scheme.

Indeed, the estimator maxk ψ̂k will generally be positively biased
asymptotically, which makes using it as a basis for inference difficult.
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A simple variant of our approach: sample splitting

Before presenting our approach in full generality, I’ll present a simple version of
it based on sample splitting.

1 For each k, let

ψ̂
(1)
k and ψ̂

(2)
k denote a one-step estimator for Ψk (P) based on the first and

second half of the data, respectively.

σ̂k be an estimator of the limiting standard deviation σk of ψ̂
(2)
k .

2 Estimate a maximizing index of Ψk(P) via

k̂ ∈ argmax
k

ψ̂
(1)
k .

3 Return as confidence interval

ψ̂
(2)

k̂
± 1.96

σ̂k̂√
n/2

.
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A simple variant of our approach: sample splitting

Establishing the asymptotic coverage of our confidence interval relies on
showing:

k̂ is nearly a maximizing index of Ψk(P), in the sense that

Ψk̂(P) = maxkΨk(P) + op(n
1/2);

the uniformity of the linearization argument used to justify the validity
of a one-step estimator for Ψk(P) over k ∈ {1, 2, . . . , p}.

We can justify both of these properties under the condition that
log(p)/n1/4 → 0 with sample size, which allows p to grow rapidly with n.

The most challenging part of providing this guarantee involves finding an
exponential tail bound for a “remainder term” involving martingale
integrals with unpredictable integrands that change with n.
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A simple variant of our approach: sample splitting

Drawback of sample-splitting:

Width of confidence interval is determined by only half of the
observations.

Cannot overcome this drawback via cross-fitting.

The non-regularity of the parameter maxkΨk(·) would render the
resulting confidence interval invalid.

This non-regularity owes to the non-smooth maximization operation.
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Overview of estimator

Split data into V chunks. Here we let V = 5:

Estimate a maximizing index and nuisance functions

Evaluate one-step estimator
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Overview of estimator
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Overview of estimator

Final estimate an average of the four chunk-based estimates:

ψ̂final =
V∑

v=2

w (v−1)ψ̂(v),

where w (v−1) are convex weights inversely proportional to the estimated
asymptotic standards deviation of ψ̂(v)

For appropriately defined σ̄n and under similar conditions to those used in
the sample-splitting special case, a martingale CLT yields that

√
n′

[
ψ̂final −maxkΨk(P)

]
σ̄n

d−→ Normal(0, 1),

where n′ = V−1
V

× n, which facilitates the construction of confidence
intervals.
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Weakness of our estimator and a simple, but surprisingly effective, fix

As presented thus far, our estimator depends on the order of the data used to
define the chunks.

Though it is tempting to remove this dependence by averaging over many
orderings, it is unclear how to make inference based on this estimator.

The problem is that this averaging scheme breaks the martingale
structure that we use to justify our approach.

We instead consider an alternative testing strategy:

1 Define 10 different orderings of the data.

2 Compute our estimator on each of these orderings.

3 Report minimal, Bonferroni-corrected p-value (correcting for 10 tests).

A similar approach can be used to construct confidence intervals.
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Setting

Survival times are generated under one of the following scenarios:

Model N (no signal feature): T = ε;
Model A1 (1 signal feature): T = U1/4 + ε;
Model A2 (10 signal features): T =

∑p
k=1 βkUk + ε with

β1 = . . . = β5 = 0.15, β6 = . . . = β10 = −0.1,
βk = 0 for k ≥ 11.

The features are such that

U ∼ N

0,


1 0.25 0.25 . . . 0.25

0.25 1 0.25 . . . 0.25
0.25 0.25 1 . . . 0.25
...

...
...

. . .
...

0.25 0.25 0.25 . . . 1




The errors are either

Independent: ε | U ∼ N(0, 1), or

Dependent: ε | U ∼ N(0, 0.7[|U1|+ 0.7]).

We study the performance of a test of

H0 : maxk Ψk(P) = 0 vs. H1 : not H0.
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Results (n = 500)
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Concluding remarks

We’ve described a means to evaluate the maximal association of a feature with
a right-censored outcome.

Number of features can be large relative to sample size, nearly on the
order of exp(n1/4).

While we characterized association via a slope parameter, other parameters
could also be considered.

The framework generalizes naturally to other association measures
provided an asymptotically linear estimator is available in the
univariate setting.

However, a new analysis would be needed to describe the extent to which
p can grow with n.
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Thank you!
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Example from HIV prevention studies

Goal: assess whether there are viral characteristics that predict the potency
of a monoclonal antibody for preventing HIV replication

Each observation is a pseudovirus

T = the concentration needed to achieve a 50% reduction of the (in vitro)
rate of viral replication (termed the IC50)

For highly-resistant viruses, viral replication may not be reduced by 50%
even at the maximal observed concentration (C), so that T is
right-censored.

U consists of characteristics of the virus

We looked at data on the neutralization of 293 HIV pseudo-viruses, generated
by the HIV Vaccine Trials Network [2].
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Results

Table: Results of applying the Bonferroni one-step estimator and the stabilized
one-step estimator to data on Subtype C. The data consist of 293 pseudoviruses,
12950 binary predictors, and 153 count predictors.

Method
Binary effects Count effects

95% CI p-value 95% CI p-value

Bonferroni Cox – < 0.001 – 0.34
Bonferroni One-Step – < 0.001 – 0.91
Stabilized One-Step (10.4, 23.1) < 0.001 (3.3, 5.0) < 0.001
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